日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由.當且僅當時等號成立.得出. 因此第8年利潤最高為520萬元. 查看更多

           

          題目列表(包括答案和解析)

          已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
          (1)可以證明:定理“若a、b∈R*,則(當且僅當a=b時取等號)”推廣到三個正數(shù)時結論是正確的,試寫出推廣后的結論(無需證明);
          (2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實數(shù)a的取值范圍,并由此猜測y=f(x)的單調性(無需證明);
          (3)對滿足(2)的條件的一個常數(shù)a,設x=x1時,f(x)取得最大值.試構造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當x∈(-2,2)時,g(x)=f(x),當x∈D時,g(x)取得最大值的自變量的值構成以x1為首項的等差數(shù)列.

          查看答案和解析>>

          已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
          (1)可以證明:定理“若a、b∈R*,則(當且僅當a=b時取等號)”推廣到三個正數(shù)時結論是正確的,試寫出推廣后的結論(無需證明);
          (2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實數(shù)a的取值范圍,并由此猜測y=f(x)的單調性(無需證明);
          (3)對滿足(2)的條件的一個常數(shù)a,設x=x1時,f(x)取得最大值.試構造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當x∈(-2,2)時,g(x)=f(x),當x∈D時,g(x)取得最大值的自變量的值構成以x1為首項的等差數(shù)列.

          查看答案和解析>>

          已知f(x)=a2x-
          1
          2
          x3,x∈(-2,2)為正常數(shù).
          (1)可以證明:定理“若a、b∈R*,則
          a+b
          2
          ab
          (當且僅當a=b時取等號)”推廣到三個正數(shù)時結論是正確的,試寫出推廣后的結論(無需證明);
          (2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實數(shù)a的取值范圍,并由此猜測y=f(x)的單調性(無需證明);
          (3)對滿足(2)的條件的一個常數(shù)a,設x=x1時,f(x)取得最大值.試構造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當x∈(-2,2)時,g(x)=f(x),當x∈D時,g(x)取得最大值的自變量的值構成以x1為首項的等差數(shù)列.

          查看答案和解析>>

          已知f(x)=a2x-
          1
          2
          x3,x∈(-2,2)為正常數(shù).
          (1)可以證明:定理“若a、b∈R*,則
          a+b
          2
          ab
          (當且僅當a=b時取等號)”推廣到三個正數(shù)時結論是正確的,試寫出推廣后的結論(無需證明);
          (2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實數(shù)a的取值范圍,并由此猜測y=f(x)的單調性(無需證明);
          (3)對滿足(2)的條件的一個常數(shù)a,設x=x1時,f(x)取得最大值.試構造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當x∈(-2,2)時,g(x)=f(x),當x∈D時,g(x)取得最大值的自變量的值構成以x1為首項的等差數(shù)列.

          查看答案和解析>>

          已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.

          (1)求數(shù)列的通項公式和數(shù)列的前n項和;

          (2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

          (3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

          【解析】第一問利用在中,令n=1,n=2,

             即      

          解得,, [

          時,滿足,

          ,

          第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

           ,等號在n=2時取得.

          此時 需滿足.  

          ②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時取得最小值-6.

          此時 需滿足

          第三問

               若成等比數(shù)列,則

          即.

          ,可得,即,

                  .

          (1)(法一)在中,令n=1,n=2,

             即      

          解得,, [

          時,滿足,

          ,

          (2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

           ,等號在n=2時取得.

          此時 需滿足.  

          ②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時取得最小值-6.

          此時 需滿足

          綜合①、②可得的取值范圍是

          (3),

               若成等比數(shù)列,則,

          即.

          ,可得,即,

          ,且m>1,所以m=2,此時n=12.

          因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列

           

          查看答案和解析>>


          同步練習冊答案