日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ①.即時.不等式的解為:或 查看更多

           

          題目列表(包括答案和解析)

          已知,設(shè)命題:不等式解集為R;命題:方程沒有實(shí)根,如果命題p或q為真命題,p且q為假命題,求的取值范圍.

          【解析】本題先求出p、q為真時的c的取值范圍;然后再對p、q一真一假兩種情況進(jìn)行討論求解,最后求并集即可.

           

          查看答案和解析>>

          已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為,

          (1)若方程有兩個相等的根,求的解析式;

          (2)若的最大值為正數(shù),求的取值范圍.

          【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

          設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。

          第二問中,

          解:(1)∵f(x)+2x>0的解集為(1,3),

             ①

          由方程

                        ②

          ∵方程②有兩個相等的根,

          ,

          即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

          a=-1/5代入①得:

          (2)由

           

           解得:

          故當(dāng)f(x)的最大值為正數(shù)時,實(shí)數(shù)a的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

          【解析】第一問中,當(dāng)時,,.結(jié)合表格和導(dǎo)數(shù)的知識判定單調(diào)性和極值,進(jìn)而得到最值。

          第二問中,∵,,      

          ∴原不等式等價于:,

          , 亦即

          分離參數(shù)的思想求解參數(shù)的范圍

          解:(Ⅰ)當(dāng)時,

          當(dāng)上變化時,的變化情況如下表:

           

           

          1/e

          時,,

          (Ⅱ)∵,,      

          ∴原不等式等價于:,

          , 亦即

          ∴對于任意的,原不等式恒成立,等價于恒成立,

          ∵對于任意的時, (當(dāng)且僅當(dāng)時取等號).

          ∴只需,即,解之得.

          因此,的取值范圍是

           

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項(xiàng)公式;

          (2)若不等式對任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,

          由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設(shè)數(shù)列公差為,由題意可知,即

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于

          當(dāng)時,;當(dāng)時,;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學(xué)歸納法.

          當(dāng)時,,成立.

          假設(shè)當(dāng)時,不等式成立,

          當(dāng)時,, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調(diào)性證明.

          要證 

          只要證  ,  

          設(shè)數(shù)列的通項(xiàng)公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>

          已知函數(shù)

          (1)求函數(shù)的定義域;

          (2)求函數(shù)在區(qū)間上的最小值;

          (3)已知,命題p:關(guān)于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

          【解析】第一問中,利用由 即

          第二問中,得:

          ,

          第三問中,由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

          當(dāng)命題p為真,命題q為假時;當(dāng)命題p為假,命題q為真時分為兩種情況討論即可 。

          解:(1)由 即

          (2),得:

          (3)由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

          當(dāng)命題p為真,命題q為假時,

          當(dāng)命題p為假,命題q為真時,

          所以

           

          查看答案和解析>>


          同步練習(xí)冊答案