日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [評析]對數(shù)值中的符號.當(dāng)時是否應(yīng)該.有必要引入中學(xué)還在討論當(dāng)中.高考就出現(xiàn)了這樣符號.結(jié)論:研究及有爭議的內(nèi)容不能在試題中出現(xiàn). 查看更多

           

          題目列表(包括答案和解析)

          的展開式中第3項與第7項的二項式系數(shù)相等,則該展開式中的系數(shù)為_________.

          【解析】因為展開式中的第3項和第7項的二項式系數(shù)相同,即,所以,所以展開式的通項為,令,解得,所以,所以的系數(shù)為.

           

          查看答案和解析>>

          設(shè)數(shù)列的各項均為正數(shù).若對任意的,存在,使得成立,則稱數(shù)列為“Jk型”數(shù)列.

          (1)若數(shù)列是“J2型”數(shù)列,且,,求

          (2)若數(shù)列既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列是等比數(shù)列.

          【解析】1)中由題意,得,,,,…成等比數(shù)列,且公比,

          所以.

          (2)中證明:由{}是“j4型”數(shù)列,得,…成等比數(shù)列,設(shè)公比為t. 由{}是“j3型”數(shù)列,得

          ,…成等比數(shù)列,設(shè)公比為;

          ,…成等比數(shù)列,設(shè)公比為;

          …成等比數(shù)列,設(shè)公比為;

           

          查看答案和解析>>

          已知正項數(shù)列的前n項和滿足:

          (1)求數(shù)列的通項和前n項和;

          (2)求數(shù)列的前n項和;

          (3)證明:不等式  對任意的都成立.

          【解析】第一問中,由于所以

          兩式作差,然后得到

          從而得到結(jié)論

          第二問中,利用裂項求和的思想得到結(jié)論。

          第三問中,

                 

          結(jié)合放縮法得到。

          解:(1)∵     ∴

                ∴

                ∴   ∴  ………2分

                又∵正項數(shù)列,∴           ∴ 

          又n=1時,

             ∴數(shù)列是以1為首項,2為公差的等差數(shù)列……………3分

                                       …………………4分

                             …………………5分 

          (2)       …………………6分

              ∴

                                    …………………9分

          (3)

                …………………12分

                  

             ∴不等式  對任意的,都成立.

           

          查看答案和解析>>

          設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

          (1)求正實數(shù)a的取值范圍;

          (2)比較的大小,說明理由;

          (3)求證:(n∈N*, n≥2)

          【解析】第一問中,利用

          解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

          ∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

          (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

          ∴n≥2時:f()=

            

           (3)  ∵   ∴

           

          查看答案和解析>>

          已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

          (Ⅰ)若 ,是否存在,有?請說明理由;

          (Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

          (Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明.

          【解析】第一問中,由,整理后,可得、為整數(shù)不存在、,使等式成立。

          (2)中當(dāng)時,則

          ,其中是大于等于的整數(shù)

          反之當(dāng)時,其中是大于等于的整數(shù),則,

          顯然,其中

          、滿足的充要條件是,其中是大于等于的整數(shù)

          (3)中設(shè)當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時,式不成立。由式得,整理

          當(dāng)時,符合題意。當(dāng)為奇數(shù)時,

          結(jié)合二項式定理得到結(jié)論。

          解(1)由,整理后,可得、,為整數(shù)不存在,使等式成立。

          (2)當(dāng)時,則,其中是大于等于的整數(shù)反之當(dāng)時,其中是大于等于的整數(shù),則

          顯然,其中

          、滿足的充要條件是,其中是大于等于的整數(shù)

          (3)設(shè)當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時,式不成立。由式得,整理

          當(dāng)時,符合題意。當(dāng),為奇數(shù)時,

             由,得

          當(dāng)為奇數(shù)時,此時,一定有使上式一定成立。當(dāng)為奇數(shù)時,命題都成立

           

          查看答案和解析>>


          同步練習(xí)冊答案