日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解答](Ⅰ)直角梯形ABCD的面積是M底面. 查看更多

           

          題目列表(包括答案和解析)

          在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0)

          【解析】

           

          查看答案和解析>>

          如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點(diǎn),

          (1)求證:平面;

          (2)求二面角的大。

          【解析】第一問利用線面垂直的判定定理和建立空間直角坐標(biāo)系得到法向量來表示二面角的。

          第二問中,以A為原點(diǎn),如圖所示建立直角坐標(biāo)系

          ,,

          設(shè)平面FAE法向量為,則

           

          查看答案和解析>>

          三棱柱中,側(cè)棱與底面垂直,,,分別是,的中點(diǎn).

          (Ⅰ)求證:平面;

          (Ⅱ)求證:平面;

          (Ⅲ)求三棱錐的體積.

          【解析】第一問利連結(jié),,∵M(jìn),N是AB,的中點(diǎn)∴MN//

          又∵平面,∴MN//平面      ----------4分

          ⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形是正方形.∴.∴.連結(jié),

          ,又N中的中點(diǎn),∴

          相交于點(diǎn)C,∴MN平面.      --------------9分

          ⑶中由⑵知MN是三棱錐M-的高.在直角中,

          ∴MN=.又.得到結(jié)論。

          ⑴連結(jié),∵M(jìn),N是AB,的中點(diǎn)∴MN//

          又∵平面,∴MN//平面   --------4分

          ⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,

          ∴四邊形是正方形.∴

          .連結(jié),

          ,又N中的中點(diǎn),∴

          相交于點(diǎn)C,∴MN平面.      --------------9分

          ⑶由⑵知MN是三棱錐M-的高.在直角中,

          ∴MN=.又

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          【2012高考江蘇12】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值是   

          查看答案和解析>>


          同步練習(xí)冊(cè)答案