日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)證明由二項(xiàng)式定理有. .由 (Ⅰ)知>(1<i≤m<n).而 .. 所以. (1<i≤m<n).因此.. 查看更多

           

          題目列表(包括答案和解析)

          我們知道,對一個(gè)量用兩種方法分別算一次,由結(jié)果相同可以構(gòu)造等式,這是一種非常有用的思想方法--“算兩次”(G.Fubini原理),如小學(xué)有列方程解應(yīng)用題,中學(xué)有等積法求高…
          請結(jié)合二項(xiàng)式定理,利用等式(1+x)n•(1+x)n=(1+x)2n(n∈N*
          證明:
          (1)
          n
          r=0
          (
          C
          r
          n
          )2=
          C
          n
          2n
          ;  
          (2)
          m
          r=0
          (
          C
          r
          n
          C
          m-r
          n
          )=
          C
          m
          2n

          查看答案和解析>>

          我們知道,對一個(gè)量用兩種方法分別算一次,由結(jié)果相同可以構(gòu)造等式,這是一種非常有用的思想方法--“算兩次”(G.Fubini原理),如小學(xué)有列方程解應(yīng)用題,中學(xué)有等積法求高…
          請結(jié)合二項(xiàng)式定理,利用等式(1+x)n•(1+x)n=(1+x)2n(n∈N*
          證明:
          (1);  
          (2)

          查看答案和解析>>

          已知二次函數(shù)有最大值且最大值為正實(shí)數(shù),集合

          ,集合

             (1)求;

             (2)定義的差集:,設(shè),,x均為整數(shù),且取自A-B的概率,x取自A∩B的概率,寫出與b的三組值,使,并分別寫出所有滿足上述條件的(從大到。、b(從小到大)依次構(gòu)成的數(shù)列{}、{bn}的通項(xiàng)公式(不必證明);

             (3)若函數(shù)中,, ,設(shè)t­1、t2是方程的兩個(gè)根,判斷 是否存在最大值及最小值,若存在,求出相應(yīng)的值;若不存在,請說明理由。

          查看答案和解析>>

          已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

          (Ⅰ)若 ,是否存在,有?請說明理由;

          (Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

          (Ⅲ)若試確定所有的p,使數(shù)列中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請證明.

          【解析】第一問中,由,整理后,可得、,為整數(shù)不存在、,使等式成立。

          (2)中當(dāng)時(shí),則

          ,其中是大于等于的整數(shù)

          反之當(dāng)時(shí),其中是大于等于的整數(shù),則,

          顯然,其中

          、滿足的充要條件是,其中是大于等于的整數(shù)

          (3)中設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

          當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),

          結(jié)合二項(xiàng)式定理得到結(jié)論。

          解(1)由,整理后,可得、為整數(shù)不存在、,使等式成立。

          (2)當(dāng)時(shí),則,其中是大于等于的整數(shù)反之當(dāng)時(shí),其中是大于等于的整數(shù),則,

          顯然,其中

          、滿足的充要條件是,其中是大于等于的整數(shù)

          (3)設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

          當(dāng)時(shí),符合題意。當(dāng)為奇數(shù)時(shí),

             由,得

          當(dāng)為奇數(shù)時(shí),此時(shí),一定有使上式一定成立。當(dāng)為奇數(shù)時(shí),命題都成立

           

          查看答案和解析>>


          同步練習(xí)冊答案