題目列表(包括答案和解析)
設(shè)橢圓的左、右頂點(diǎn)分別為
,點(diǎn)
在橢圓上且異于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為
.
由P在橢圓上,有
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
如圖,在直三棱柱中,底面
為等腰直角三角形,
,
為棱
上一點(diǎn),且平面
平面
.
(Ⅰ)求證:點(diǎn)為棱
的中點(diǎn);
(Ⅱ)判斷四棱錐和
的體積是否相等,并證明。
【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,
易知,
面
。由此知:
從而有
又點(diǎn)
是
的中點(diǎn),所以
,所以
點(diǎn)為棱
的中點(diǎn).
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。
(1)過點(diǎn)作
于
點(diǎn),取
的中點(diǎn)
,連
。
面
面
且相交于
,面
內(nèi)的直線
,
面
!3分
又面
面
且相交于
,且
為等腰三角形,易知
,
面
。由此知:
,從而有
共面,又易知
面
,故有
從而有
又點(diǎn)
是
的中點(diǎn),所以
,所以
點(diǎn)為棱
的中點(diǎn).
…6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD
n |
![]() |
k=1 |
1 |
lg(ak+2)lg(ak+1+2) |
lim |
n→∞ |
4 |
5 |
1 |
5 |
1 |
5 |
4 |
5 |
4 |
5 |
1 |
5 |
4 |
5 |
1 |
5 |
4 |
5 |
1 |
5 |
2 |
2 |
3 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com