日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 故k1k2=.所以直線l1和l2的斜率之積為定值-2. (Ⅱ)[法一]解: 查看更多

           

          題目列表(包括答案和解析)

          設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

          ,得,

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

          由條件得消去并整理得  ②

          ,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

          由P在橢圓上,有

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

          ,,得整理得.

          于是,代入③,

          整理得

          解得

          所以.

           

          查看答案和解析>>

          如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點(diǎn),且平面平面.

          (Ⅰ)求證:點(diǎn)為棱的中點(diǎn);

          (Ⅱ)判斷四棱錐的體積是否相等,并證明。

          【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,

          易知,。由此知:從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).

          (2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。

          (1)過點(diǎn)點(diǎn),取的中點(diǎn),連。且相交于,面內(nèi)的直線,!3分

          且相交于,且為等腰三角形,易知,。由此知:,從而有共面,又易知,故有從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).               …6分

          (2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

          ∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD

           

          查看答案和解析>>

          閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an-1+2,求數(shù)列的通項(xiàng)an
          解:令an=an-1=x,則有x=3x+2,所以x=-1,故原遞推式an=3an-1+2可轉(zhuǎn)化為:
          an+1=3(an-1+1),因此數(shù)列{an+1}是首項(xiàng)為a1+1,公比為3的等比數(shù)列.
          根據(jù)上述材料所給出提示,解答下列問題:
          已知數(shù)列{an},a1=1,an=3an-1+4,
          (1)求數(shù)列的通項(xiàng)an;并用解析幾何中的有關(guān)思想方法來解釋其原理;
          (2)若記Sn=
          n
          k=1
          1
          lg(ak+2)lg(ak+1+2)
          ,求
          lim
          n→∞
          Sn;
          (3)若數(shù)列{bn}滿足:b1=10,bn+1=100bn3,利用所學(xué)過的知識(shí),把問題轉(zhuǎn)化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項(xiàng)公式bn

          查看答案和解析>>

          閱讀不等式5x≥4x+1的解法:
          解:由5x≥4x+1,兩邊同除以5x可得1≥(
          4
          5
          )x+(
          1
          5
          )x

          由于0<
          1
          5
          4
          5
          <1
          ,顯然函數(shù)f(x)=(
          4
          5
          x+(
          1
          5
          x在R上為單調(diào)減函數(shù),
          f(1)=
          4
          5
          +
          1
          5
          =1
          ,故當(dāng)x>1時(shí),有f(x)=(
          4
          5
          x+(
          1
          5
          x<f(x)=1
          所以不等式的解集為{x|x≥1}.
          利用解此不等式的方法解決以下問題:
          (1)解不等式:9x>5x+4x;
          (2)證明:方程5x+12x=13x有唯一解,并求出該解.

          查看答案和解析>>

          先閱讀下列不等式的證法:
          已知a1,a2∈R,a12+a22=1,求證:|a1+a2|≤
          2

          證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22,則f(x)=2x2-2(a1+a2)x+1,因?yàn)閷?duì)一切x∈R,恒有f(x)≥0,所以△=4(a1+a22-8≤0,故得|a1+a2|≤
          2

          再解決下列問題:
          (1)若a1,a2,a3∈R,a12+a22+a32=1,求證|a1+a2+a3|≤
          3

          (2)試將上述命題推廣到n個(gè)實(shí)數(shù),并證明你的結(jié)論.

          查看答案和解析>>


          同步練習(xí)冊答案