日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 證明:因時(shí)..所以當(dāng)x=0時(shí).有 查看更多

           

          題目列表(包括答案和解析)

          請(qǐng)先閱讀:
          設(shè)平面向量
          a
          =(a1,a2),
          b
          =(b1,b2),且
          a
          b
          的夾角為θ,
          因?yàn)?span id="27bkzq6" class="MathJye">
          a
          b
          =|
          a
          ||
          b
          |cosθ,
          所以
          a
          b
          ≤|
          a
          ||
          b
          |.
          a1b1+a2b2
          a
          2
          1
          +
          a
          2
          2
          ×
          b
          2
          1
          +
          b
          2
          2

          當(dāng)且僅當(dāng)θ=0時(shí),等號(hào)成立.
          (I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對(duì)于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
          a
          2
          1
          +
          a
          2
          2
          +
          a
          2
          3
          )(
          b
          2
          1
          +
          b
          2
          2
          +
          b
          2
          3
          )
          成立;
          (II)試求函數(shù)y=
          x
          +
          2x-2
          +
          8-3x
          的最大值.

          查看答案和解析>>

          請(qǐng)先閱讀:
          設(shè)平面向量
          a
          =(a1,a2),
          b
          =(b1,b2),且
          a
          b
          的夾角為θ,
          因?yàn)?span dealflag="1" mathtag="math" >
          a
          b
          =|
          a
          ||
          b
          |cosθ,
          所以
          a
          b
          ≤|
          a
          ||
          b
          |.
          a1b1+a2b2
          a21
          +
          a22
          ×
          b21
          +
          b22
          ,
          當(dāng)且僅當(dāng)θ=0時(shí),等號(hào)成立.
          (I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對(duì)于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
          a21
          +
          a22
          +
          a23
          )(
          b21
          +
          b22
          +
          b23
          )
          成立;
          (II)試求函數(shù)y=
          x
          +
          2x-2
          +
          8-3x
          的最大值.

          查看答案和解析>>

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

          ,得

          當(dāng)x變化時(shí),,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

          ,得

          ①當(dāng)時(shí),,上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時(shí),,對(duì)于,,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

          當(dāng)時(shí),

                                

                                

          在(2)中取,得 ,

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案