日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2)證明:依題意得.又故 查看更多

           

          題目列表(包括答案和解析)

          在復(fù)平面內(nèi), 是原點,向量對應(yīng)的復(fù)數(shù)是,=2+i。

          (Ⅰ)如果點A關(guān)于實軸的對稱點為點B,求向量對應(yīng)的復(fù)數(shù)

          (Ⅱ)復(fù)數(shù),對應(yīng)的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結(jié)論。

          【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

          第二問中,由題意得,=(2,1)  ∴

          同理,所以A、B、C、D四點到原點O的距離相等,

          ∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上

          (Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

               ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

          (Ⅱ)A、B、C、D四點在同一個圓上。                              2分

          證明:由題意得,=(2,1)  ∴

            同理,所以A、B、C、D四點到原點O的距離相等,

          ∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

          (1)求正實數(shù)a的取值范圍;

          (2)比較的大小,說明理由;

          (3)求證:(n∈N*, n≥2)

          【解析】第一問中,利用

          解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

          ∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

          (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

          ∴n≥2時:f()=

            

           (3)  ∵   ∴

           

          查看答案和解析>>

          C

          [解析] 依題意得=()[x+(1-x)]=13+≥13+2=25,當(dāng)且僅當(dāng),即x時取等號,選C.

          查看答案和解析>>

          已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.

          (Ⅰ)求實數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

          【解析】第一問當(dāng)時,,則。

          依題意得:,即    解得

          第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

          (Ⅰ)當(dāng)時,,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時,,令

          當(dāng)變化時,的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,!上的最大值為2.

          ②當(dāng)時, .當(dāng)時, ,最大值為0;

          當(dāng)時, 上單調(diào)遞增!最大值為。

          綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

          當(dāng)時,即時,在區(qū)間上的最大值為。

          (Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時,

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

           

          查看答案和解析>>


          同步練習(xí)冊答案