日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ④在△中.“ 是“ 的充分不必要條件.其中正確的命題的個(gè)數(shù)是 A.3 B.2 C.1 D.0 查看更多

           

          題目列表(包括答案和解析)

          給出以下四個(gè)命題:

          ①“”是“”的充分不必要條件

          ②若命題:“,使得”,則:“,均有

          ③如果實(shí)數(shù)滿足,則的最大值為21

          ④在中,若,則3:2:1

          其中真命題的個(gè)數(shù)為(    )

          A.1   B.2    C.3    D.4

           

          查看答案和解析>>

          給出以下四個(gè)命題:

          ①“”是“”的充分不必要條件

          ②若命題:“,使得”,則:“,均有

          ③如果實(shí)數(shù)滿足,則的最大值為21

          ④在中,若,則3:2:1

          其中真命題的個(gè)數(shù)為(    )

          A.1       B.2       C.3          D.4

           

          查看答案和解析>>

          給出以下四個(gè)命題:
          ①“”是“”的充分不必要條件
          ②若命題:“,使得”,則:“,均有
          ③如果實(shí)數(shù)滿足,則的最大值為21
          ④在中,若,則3:2:1
          其中真命題的個(gè)數(shù)為(   )
          A.1B.2C.3D.4

          查看答案和解析>>

           給出以下四個(gè)命題:

              ①“”是“”的充分不必要條件

              ②若命題:“,使得”,則:“,均有

              ③如果實(shí)數(shù)滿足,則的最大值為21

              ④在中,若,則3:2:1

              其中真命題的個(gè)數(shù)為              (    )

              A.1    B.2    C.3    D.4

           

          查看答案和解析>>

          函數(shù),其中ab,c為實(shí)數(shù),則f(x)R上是增函數(shù)的

          [  ]

          A.充要條件

          B.充分不必要條件

          C.必要不充分條件

          D.既不充分也不必要條件

          查看答案和解析>>

           

          一、選擇題:

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          B

          B

          B

          C

          A

          D

          B

          C

          C

          B

           

          二、填空題:

          題號(hào)

          11

          12

          13

          14

          15

           

          答案

           

          1000

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

           

          三、解答題:本大題共6小題,滿分80分.解答須寫出文字說(shuō)明、證明過程和演算步驟.

          16.(本小題滿分12分)

          解:(1)由=,得:=,

                        即:,     

                  又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

             (2)直線6ec8aac122bd4f6e方程為:

                                     

          點(diǎn)6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

                        ∵

                        ∴       ∴ 

                        又∵0<6ec8aac122bd4f6e,        

          ∴sin>0,cos<0

                        ∴ 

          ∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

          17.(本小題滿分12分)

          解:(1)某同學(xué)被抽到的概率為

          設(shè)有名男同學(xué),則男、女同學(xué)的人數(shù)分別為

          (2)把名男同學(xué)和名女同學(xué)記為,則選取兩名同學(xué)的基本事件有種,其中有一名女同學(xué)的有

          選出的兩名同學(xué)中恰有一名女同學(xué)的概率為

          (3),

          ,

          第二同學(xué)的實(shí)驗(yàn)更穩(wěn)定

                                        

          18.(本小題滿分14分)

          解:(1)分別是棱中點(diǎn)   

            1. 平面

              是棱的中點(diǎn)            

              平面

              平面平面

              (2)  

              同理

                    

                

              ,       

              ,,    

               

              19.(本小題滿分14分)

              解:(1)由……①,得……②

              ②-①得:    

              所以,求得     

              (2),    

                                                                   

               

               

              20.(本小題滿分14分)

              解:(1)由題設(shè)知:

              得:

              解得橢圓的方程為

              (2)

                          

              從而將求的最大值轉(zhuǎn)化為求的最大值

              是橢圓上的任一點(diǎn),設(shè),則有

              ,

              當(dāng)時(shí),取最大值   的最大值為

               

              21.(本小題滿分14分)

              解:(1)由,,得,

              所以,

              (2)由題設(shè)得

              對(duì)稱軸方程為

              由于上單調(diào)遞增,則有

              (Ⅰ)當(dāng)時(shí),有

              (Ⅱ)當(dāng)時(shí),

              設(shè)方程的根為,

              ①若,則,有    解得

              ②若,即,有;

                        

              由①②得

              綜合(Ⅰ), (Ⅱ)有 

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>