日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求橢圓的方程, 查看更多

           

          題目列表(包括答案和解析)








          ⑴求橢圓的方程;
          ⑵設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線 有公共點(diǎn)時(shí),求△面積的最大值

          查看答案和解析>>

          橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
          (1)求橢圓和拋物線的方程;
          (2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
          (3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.

          查看答案和解析>>

          橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
          (1)求橢圓和拋物線的方程;
          (2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
          (3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.

          查看答案和解析>>

          設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
          (1)問:直線能否垂直?若能,求之間滿足的關(guān)系式;若不能,說明理由;
          (2)已知的中點(diǎn),且點(diǎn)在橢圓上.若,求之間滿足的關(guān)系式.

          查看答案和解析>>

          設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
          (1)問:直線能否垂直?若能,之間滿足什么關(guān)系;若不能,說明理由;
          (2)已知的中點(diǎn),且點(diǎn)在橢圓上.若,求橢圓的離心率.

          查看答案和解析>>

           

          一、選擇題:

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          B

          B

          B

          C

          A

          D

          B

          C

          C

          B

           

          二、填空題:

          題號

          11

          12

          13

          14

          15

           

          答案

           

          1000

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

           

          三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

          16.(本小題滿分12分)

          解:(1)由=,得:=

                        即:,     

                  又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

             (2)直線6ec8aac122bd4f6e方程為:

                                      ,

          點(diǎn)6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

                        ∵

                        ∴       ∴ 

                        又∵0<6ec8aac122bd4f6e,        

          ∴sin>0,cos<0

                        ∴ 

          ∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

          17.(本小題滿分12分)

          解:(1)某同學(xué)被抽到的概率為

          設(shè)有名男同學(xué),則,男、女同學(xué)的人數(shù)分別為

          (2)把名男同學(xué)和名女同學(xué)記為,則選取兩名同學(xué)的基本事件有種,其中有一名女同學(xué)的有

          選出的兩名同學(xué)中恰有一名女同學(xué)的概率為

          (3)

          ,

          第二同學(xué)的實(shí)驗(yàn)更穩(wěn)定

                                        

          18.(本小題滿分14分)

          解:(1)分別是棱中點(diǎn)   

            1. 平面

              是棱的中點(diǎn)            

              平面

              平面平面

              (2)  

              同理

                    

                

              ,       

              ,,    

               

              19.(本小題滿分14分)

              解:(1)由……①,得……②

              ②-①得:    

              所以,求得     

              (2),    

                                                                   

               

               

              20.(本小題滿分14分)

              解:(1)由題設(shè)知:

              得:

              解得,橢圓的方程為

              (2)

                          

              從而將求的最大值轉(zhuǎn)化為求的最大值

              是橢圓上的任一點(diǎn),設(shè),則有

              ,

              當(dāng)時(shí),取最大值   的最大值為

               

              21.(本小題滿分14分)

              解:(1)由,,得,

              所以,

              (2)由題設(shè)得

              對稱軸方程為,

              由于上單調(diào)遞增,則有

              (Ⅰ)當(dāng)時(shí),有

              (Ⅱ)當(dāng)時(shí),

              設(shè)方程的根為

              ①若,則,有    解得

              ②若,即,有;

                        

              由①②得 。

              綜合(Ⅰ), (Ⅱ)有 

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>