日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 直角三角形中較小的銳角為.那么sin2的值等于 . 查看更多

           

          題目列表(包括答案和解析)

          2002年在北京召開的國際數(shù)學(xué)家大會,會標(biāo)是我國以古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計的.弦圖是由四個全等直角三角形與一個小正方形拼成的一個大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,那么的值等于 ________.

          查看答案和解析>>

          2002年在北京召開的國際數(shù)學(xué)家大會,會標(biāo)是我國以古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計的.弦圖是由四個全等直角三角形與一個小正方形拼成的一個大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,那么的值等于________.

          查看答案和解析>>

          精英家教網(wǎng)2002年在北京召開的國際數(shù)學(xué)家大會,會標(biāo)是以我國古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計的.弦圖是由四個全等直角三角形與一個小正方形拼成的一個大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為θ,那么cos2θ的值等于
           

          查看答案和解析>>

          2002年在北京召開的國際數(shù)學(xué)家大會,會標(biāo)是我國以古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計的.弦圖是由四個全等直角三角形與一個小正方形拼成的一個大正方形(如圖).如果小正方形的面積為
          1
          25
          ,大正方形的面積為1,直角三角形中較小的銳角為θ,那么sin2θ-cos2θ的值為( 。

          查看答案和解析>>

          13.2002年在北京召開的國際數(shù)學(xué)家大會,會標(biāo)是以我國古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計的.弦圖是由四個全等直角三角形與一個小正方形拼成的一個大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為θ,那么cos2θ的值等于__________.

          查看答案和解析>>

          一、選擇題(本大題共10小題,每小題5分,共50分)

             1~5  C B D C D     6~10  A C A B B

          二、填空題(本大題共6小題,每小題4分,共24分)

          11. ;      12 . ;       13.  31;  

          14. ;       15. ;             16.-,0 .

          三、解答題(本大題共6小題,共76分)

          17.(本題滿分13分)

          解:(Ⅰ)當(dāng)a=2時,A=,          …………………………2分

          B=                            …………………………4分

          ∴ AB=                      …………………………6分

          (Ⅱ)∵(a2+1)-a=(a-)2>0,即a2+1>a

          ∴B={x|a<x<a2+1}                            ……………………7分

          ①當(dāng)3a+1=2,即a=時A=Φ,不存在a使BA      ……………………8分

          ②當(dāng)3a+1>2,即a>時A={x|2<x<3a+1}

          由BA得:2≤a≤3             …………………10分

          ③當(dāng)3a+1<2,即a<時A={x|3a+1<x<2}

          由BA得-1≤a≤-                  …………………12分

          綜上,a的范圍為:[-1,-]∪[2,3]                        …………………13分

          18.(本題滿分13分)

          解:(Ⅰ)由………4分

          的值域?yàn)閇-1,2]           ……………………7分

          (Ⅱ)∵

                             ………………10分

          ………………13分

          19. (本題滿分13分)

          解:(Ⅰ) ,              ……………………2分

          設(shè)在公共點(diǎn)處的切線相同

          由題意 

                                       ……………………4分

          得:,或(舍去) 

          即有                 ……………………6分

          (Ⅱ)設(shè),……………………7分

                      ……………………9分

          x<0,x>0

          為減函數(shù),在為增函數(shù),             ……………………11分

          于是函數(shù)上的最小值是:F(a)=f(a)-g(a)=0     ……………………12分

          故當(dāng)時,有,

          所以,當(dāng)時,                            ……………………13分

          20. (本題滿分13分)

          解:(Ⅰ)選取的5只恰好組成完整“奧運(yùn)吉祥物”的概率

                                   ………………5分

          (Ⅱ)                         …………………6分           

                                                …………10分

          ξ的分布列為:

          ξ

          10

          8

          6

          4

          P

                                                                                                        

                                   …………13分

          21.(本題滿分12分)

          解:(Ⅰ)∵, ∴     …………………………1分

          由y=解得:              …………………………2分

                              ………………………3分

          (Ⅱ)由題意得:         …………………………4分

                             

          ∴{}是以=1為首項(xiàng),以4為公差的等差數(shù)列. …………………………6分

          ,∴.          ………………………7分

          (Ⅲ)∴………8分

          ,∴ {bn}是一單調(diào)遞減數(shù)列.      ………………………10分

          ,要使,則 ,∴

          又kÎN*  ,∴k³8 ,∴kmin=8

          即存在最小的正整數(shù)k=8,使得                 ……………………12分

          22.(本題滿分12分)

          解:(Ⅰ)由余弦定理得:   ……1分

          即16=

          所以,

            ……………………………………………4分

          (當(dāng)動點(diǎn)P與兩定點(diǎn)A,B共線時也符合上述結(jié)論)

          所以動點(diǎn)P的軌跡為以A,B為焦點(diǎn),實(shí)軸長為的雙曲線

          所以,軌跡G的方程為        …………………………………………6分

          (Ⅱ)假設(shè)存在定點(diǎn)C(m,0),使為常數(shù).

          ①當(dāng)直線l不與x軸垂直時,設(shè)直線l的方程為

             …………………………………………7分

          由題意知,

          設(shè),則,  …………………8分

          于是

                       ………………9分

          要是使得 為常數(shù),當(dāng)且僅當(dāng),此時 ………………11分

          ②當(dāng)直線l與x軸垂直時,,當(dāng).

           故,在x軸上存在定點(diǎn)C(1,0) ,使得 為常數(shù). …………………………12分

           

           

           


          同步練習(xí)冊答案