日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)在中,令得 查看更多

           

          題目列表(包括答案和解析)

          中,滿足,邊上的一點(diǎn).

          (Ⅰ)若,求向量與向量夾角的正弦值;

          (Ⅱ)若,=m  (m為正常數(shù)) 且邊上的三等分點(diǎn).,求值;

          (Ⅲ)若的最小值。

          【解析】第一問中,利用向量的數(shù)量積設(shè)向量與向量的夾角為,則

          =,得,又,則為所求

          第二問因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以,

          (1)當(dāng)時,則= 

          (2)當(dāng)時,則=

          第三問中,解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">,

          所以于是

          從而

          運(yùn)用三角函數(shù)求解。

          (Ⅰ)解:設(shè)向量與向量的夾角為,則

          =,得,又,則為所求……………2

          (Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以,

          (1)當(dāng)時,則=;-2分

          (2)當(dāng)時,則=;--2分

          (Ⅲ)解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">;

          所以于是

          從而---2

          ==

          =…………………………………2

          ,,則函數(shù),在遞減,在上遞增,所以從而當(dāng)時,

           

          查看答案和解析>>

          中,已知 ,面積

          (1)求的三邊的長;

          (2)設(shè)(含邊界)內(nèi)的一點(diǎn),到三邊的距離分別是

          ①寫出所滿足的等量關(guān)系;

          ②利用線性規(guī)劃相關(guān)知識求出的取值范圍.

          【解析】第一問中利用設(shè)中角所對邊分別為

              

          又由 

          又由 

                 又

          的三邊長

          第二問中,①

          依題意有

          作圖,然后結(jié)合區(qū)域得到最值。

           

          查看答案和解析>>

          在平行四邊形OABC中,已知過點(diǎn)C的直線與線段OA,OB分別相交于點(diǎn)M,N.若
          OM
          =x
          OA
          ON
          =y
          OB

          (1)求證:x與y的關(guān)系為y=
          x
          x+1
          ;
          (2)設(shè)f(x)=
          x
          x+1
          ,定義函數(shù)F(x)=
          1
          f(x)
          -1(0<x≤1)
          ,點(diǎn)列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為
          1
          2
          的等比數(shù)列,O為原點(diǎn),令
          OP
          =
          OP1
          +
          OP2
          +…+
          OPn
          ,是否存在點(diǎn)Q(1,m),使得
          OP
          OQ
          ?若存在,請求出Q點(diǎn)坐標(biāo);若不存在,請說明理由.
          (3)設(shè)函數(shù)G(x)為R上偶函數(shù),當(dāng)x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當(dāng)方程G(x)=ax+
          1
          2
          在x∈[2k,2k+2](k∈N)上有兩個不同的實(shí)數(shù)解時,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          在如圖所示三角形中,令第n行的各數(shù)的和為an,得到數(shù){an},則數(shù)列{an}的通項公式為
          an=n•2n-1
          an=n•2n-1

          查看答案和解析>>

          在平面直角坐標(biāo)系xOy中,平面區(qū)域W中的點(diǎn)的坐標(biāo)(x,y)滿足x2+y2≤4,從區(qū)域W中隨機(jī)取點(diǎn)M(x,y);
          (Ⅰ)若x∈Z,y∈Z,令ξ=x2+y2,求ξ的分布列與數(shù)學(xué)期望;
          (Ⅱ)已知直線l:y=-x+b(b>0)與圓x2+y2=4相交所截得的弦長為2
          2
          ,求y≥-x+b的概率.

          查看答案和解析>>


          同步練習(xí)冊答案