日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)的圖象經(jīng)過四個象限.則實數(shù)的取值范圍是 查看更多

           

          題目列表(包括答案和解析)

          (理科做)
          閱讀下面題目的解法,再根據(jù)要求解決后面的問題.
          閱讀題目:對于任意實數(shù)a1,a2,b1,b2,證明不等式(a1b1+a2b22≤(a12+a22)(b12+b22).
          證明:構(gòu)造函數(shù)f(x)=(a1x+b12+(a2x+b22=(a12+a22)x2+2(a1b1+a2b2)x+(b12+b22).
          注意到f(x)≥0,所以△=[2(a1b1+a2b2)]2-4(a12+a22)(b12+b22)≤0,
          即(a1b1+a2b22≤(a12+a22)(b12+b22).
          (其中等號成立當(dāng)且僅當(dāng)a1x+b1=a2x+b2=0,即a1b2=a2b1.)
          問題:(1)請用這個不等式證明:對任意正實數(shù)a,b,x,y,不等式
          a2
          x
          +
          b2
          y
          (a+b)2
          x+y
          成立.
          (2)用(1)中的不等式求函數(shù)y=
          2
          x
          +
          9
          1-2x
          (0<x<
          1
          2
          )
          的最小值,并指出此時x的值.
          (3)根據(jù)閱讀題目的證明,將不等式(a1b1+a2b22≤(a12+a22)(b12+b22)進(jìn)行推廣,得到一個更一般的不等式,并用構(gòu)造函數(shù)的方法對你的推廣進(jìn)行證明.

          查看答案和解析>>

          函數(shù)f(x)=x3+ax2+x+2(x∈R)
          (1)當(dāng)a=-1時,求函數(shù)的極值
          (2)若f(x)在x∈(-∞,∞)上是增函數(shù),求實數(shù)a的取值范圍.
          (3)(理科做,文科不用做)
          若a=3時,f(x)=x3+3x2+x+2的導(dǎo)函數(shù)f(x)是二次函數(shù),f(x)的圖象關(guān)于軸對稱.你認(rèn)為三次函數(shù)f(x)=x3+3x2+x+2的圖象是否具有某種對稱性,并證明你的結(jié)論.

          查看答案和解析>>

          求下列函數(shù)的導(dǎo)數(shù):
          (1)f(x)=ln(8x)+x (理科) 
                 f(x)=x-lnx(文科)
          (2)f(x)=(
          x
          +1)(
          1
          x
          -1).

          查看答案和解析>>

          (2013•濟(jì)寧一模)若函數(shù)f(x)=sin(ωx+
          π
          3
          )的圖象向右平移
          π
          3
          個單位后與原函數(shù)的圖象關(guān)于x軸對稱,則ω的最小正值是( 。

          查看答案和解析>>

          定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項.
          [理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

          查看答案和解析>>


          同步練習(xí)冊答案