日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以.的取值范圍為.)補(bǔ)充作業(yè) 查看更多

           

          題目列表(包括答案和解析)

          某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標(biāo)價(jià)的80%出售;同時(shí),當(dāng)顧客在該商場內(nèi)消費(fèi)滿一定金額后,按如下方案相應(yīng)獲得第二次優(yōu)惠:
          消費(fèi)金額(元)的范圍 [200,400) [400,500) [500,700) [700,900)
          第二次優(yōu)惠金額(元) 30 60 100 150
          根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠.例如:購買標(biāo)價(jià)為600元的商品,則消費(fèi)金額為480元,480∈[400,500),所以獲得第二次優(yōu)惠金額為60元,獲得的優(yōu)惠總額為:600×0.2+60=180(元).
          設(shè)購買商品的優(yōu)惠率=
          購買商品獲得的優(yōu)惠總額
          商品的標(biāo)價(jià)

          試問:(1)購買一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?
          (2)設(shè)顧客購買標(biāo)價(jià)為x元(x∈[250,1000]) 的商品獲得的優(yōu)惠總額為y元,試建立y關(guān)于x的函數(shù)關(guān)系式;
          (3)對(duì)于標(biāo)價(jià)在[625,800)(元)內(nèi)的商品,顧客購買商品的標(biāo)價(jià)的取值范圍為多少時(shí),可得到不小于
          1
          3
          的優(yōu)惠率?(取值范圍用區(qū)間表示)

          查看答案和解析>>

          已知曲線C:(m∈R)

          (1)   若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;

          (2)     設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線。

          【解析】(1)曲線C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

          (2)當(dāng)m=4時(shí),曲線C的方程為,點(diǎn)A,B的坐標(biāo)分別為,

          ,得

          因?yàn)橹本與曲線C交于不同的兩點(diǎn),所以

          設(shè)點(diǎn)M,N的坐標(biāo)分別為,則

          直線BM的方程為,點(diǎn)G的坐標(biāo)為

          因?yàn)橹本AN和直線AG的斜率分別為

          所以

          ,故A,G,N三點(diǎn)共線。

           

          查看答案和解析>>

          【答案】

          【解析】設(shè),有幾何意義知的最小值為, 又因?yàn)榇嬖趯?shí)數(shù)x滿足,所以只要2大于等于f(x)的最小值即可.即2,解得:,所以a的取值范圍是.故答案為:

          查看答案和解析>>

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設(shè)切點(diǎn)為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過點(diǎn)A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>

          某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標(biāo)價(jià)的80%出售;同時(shí),當(dāng)顧客在該商場內(nèi)消費(fèi)滿一定金額后,按如下方案相應(yīng)獲得第二次優(yōu)惠:
          消費(fèi)金額(元)的范圍 [200,400) [400,500) [500,700) [700,900)
          第二次優(yōu)惠金額(元) 30 60 100 150
          根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠.例如:購買標(biāo)價(jià)為600元的商品,則消費(fèi)金額為480元,480∈[400,500),所以獲得第二次優(yōu)惠金額為60元,獲得的優(yōu)惠總額為:600×0.2+60=180(元).
          設(shè)購買商品的優(yōu)惠率=
          購買商品獲得的優(yōu)惠總額
          商品的標(biāo)價(jià)

          試問:(1)購買一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?
          (2)設(shè)顧客購買標(biāo)價(jià)為x元(x∈[250,1000]) 的商品獲得的優(yōu)惠總額為y元,試建立y關(guān)于x的函數(shù)關(guān)系式;
          (3)對(duì)于標(biāo)價(jià)在[625,800)(元)內(nèi)的商品,顧客購買商品的標(biāo)價(jià)的取值范圍為多少時(shí),可得到不小于
          1
          3
          的優(yōu)惠率?(取值范圍用區(qū)間表示)

          查看答案和解析>>


          同步練習(xí)冊(cè)答案