日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:[方法一](割)α.β的距離為h.AB.CD的距離也是h,設(shè)AB.CD的公垂線為OH,則體積V=VC-AOB+VD-AOB=SAOB=SAOBCD=(ah)a=a2h 查看更多

           

          題目列表(包括答案和解析)

          如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,的交點(diǎn),是線段的中點(diǎn).

          (Ⅰ)求證:平面;

          (Ⅱ)求證:平面;

          (Ⅲ)求二面角的大。

          【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面,平面,∴平面,,又,∴平面. 可得證明

          (3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,

          為平面的法向量.∴利用法向量的夾角公式,

          的夾角為,即二面角的大小為

          方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn),

          ,又點(diǎn),,∴

          ,且不共線,∴

          平面,平面,∴平面.…………………4分

          (Ⅱ)∵,

          ,,即,

          ,∴平面.   ………8分

          (Ⅲ)∵,,∴平面,

          為面的法向量.∵,

          為平面的法向量.∴,

          的夾角為,即二面角的大小為

           

          查看答案和解析>>

          已知是等差數(shù)列,其前n項(xiàng)和為Sn是等比數(shù)列,且.

          (Ⅰ)求數(shù)列的通項(xiàng)公式;

          (Ⅱ)記,,證明).

          【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

          ,得,,.

          由條件,得方程組,解得

          所以,.

          (2)證明:(方法一)

          由(1)得

               ①

             ②

          由②-①得

          ,

          (方法二:數(shù)學(xué)歸納法)

          ①  當(dāng)n=1時(shí),,,故等式成立.

          ②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

             

             

          ,因此n=k+1時(shí)等式也成立

          由①和②,可知對(duì)任意,成立.

           

          查看答案和解析>>

          設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

          ,得,

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

          由條件得消去并整理得  ②

          ,,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

          由P在橢圓上,有

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

          ,得整理得.

          于是,代入③,

          整理得

          解得,

          所以.

           

          查看答案和解析>>

          雙曲線高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。的一條漸近線為高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,由方程組高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,消去y,得高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。有唯一解,所以△=高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,

          所以高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,故選D. w.w.w.k.s.5.u.c.o.m    

          答案:D.

          【命題立意】:本題考查了雙曲線的漸近線的方程和離心率的概念,以及直線與拋物線的位置關(guān)系,只有一個(gè)公共點(diǎn),則解方程組有唯一解.本題較好地考查了基本概念基本方法和基本技能.

          查看答案和解析>>

          已知向量),向量,,

          .

          (Ⅰ)求向量; (Ⅱ)若,,求.

          【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

          (1)問(wèn)中∵,∴,…………………1分

          ,得到三角關(guān)系是,結(jié)合,解得。

          (2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

          解析一:(Ⅰ)∵,∴,…………1分

          ,∴,即   ①  …………2分

           ②   由①②聯(lián)立方程解得,5分

               ……………6分

          (Ⅱ)∵,,  …………7分

          ,               ………8分

          又∵,          ………9分

          ,            ……10分

          解法二: (Ⅰ),…………………………………1分

          ,∴,即,①……2分

              ②

          將①代入②中,可得   ③    …………………4分

          將③代入①中,得……………………………………5分

             …………………………………6分

          (Ⅱ) 方法一 ∵,,∴,且……7分

          ,從而.      …………………8分

          由(Ⅰ)知, ;     ………………9分

          .     ………………………………10分

          又∵,∴, 又,∴    ……11分

          綜上可得  ………………………………12分

          方法二∵,,∴,且…………7分

          .                                 ……………8分

          由(Ⅰ)知, .                …………9分

                       ……………10分

          ,且注意到,

          ,又,∴   ………………………11分

          綜上可得                    …………………12分

          (若用,又∵ ∴ ,

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案