日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A. B. C. D. 查看更多

           

          題目列表(包括答案和解析)

          (必做題)先閱讀:如圖,設(shè)梯形ABCD的上、下底邊的長分別是a,b(a<b),高為h,求梯形的面積.
          方法一:延長DA、CB交于點(diǎn)O,過點(diǎn)O作CD的垂線分別交AB、CD于E、F,則EF=h.
          設(shè)OE=x,∵△OAB∽△ODC,∴
          x
          x+h
          =
          a
          b
          ,即x=
          ah
          b-a

          ∴S梯形ABCD=S△ODC-S△OAB=
          1
          2
          b(x+h)-
          1
          2
          ax=
          1
          2
          (b-a)x+
          1
          2
          bh=
          1
          2
          (a+b)h.
          方法二:作AB的平行線MN分別交AD、BC于MN,過點(diǎn)A作BC的平行線AQ分別于MN、DC于PQ,則△AMP∽△ADQ.
          設(shè)梯形AMNB的高為x,MN=y,
          x
          h
          =
          y-a
          b-a
          ⇒y=a+
          b-a
          h
          x,∴S梯形ABCD=
          h
          0
          (a+
          b-a
          h
          x)dx=(ax+
          b-a
          2h
          x2
          |
          h
          0
          =ah+
          b-a
          2h
          •h2=
          1
          2
          (a+b)h.
          再解下面的問題:
          已知四棱臺ABCD-A′B′C′D′的上、下底面的面積分別是S1,S2(S1<S2),棱臺的高為h,類比以上兩種方法,分別求出棱臺的體積(棱錐的體積=
          1
          3
          ×底面積×高).

          查看答案和解析>>

          下列命題中正確的是(   

          A.若兩條直線都垂直于第三條直線,則這兩條直線一定平行;

          B.若兩條直線和第三條直線成等角,則這兩條直線平行;

          C.與兩條異面直線都垂直的直線,叫做異面直線的公垂線;

          D.一直線與兩平行線中的一條垂直,則必與另一條也垂直.

           

          查看答案和解析>>

          下列命題中正確的是(   

          A.若兩條直線都垂直于第三條直線,則這兩條直線一定平行;

          B.若兩條直線和第三條直線成等角,則這兩條直線平行;

          C.與兩條異面直線都垂直的直線,叫做異面直線的公垂線;

          D.一直線與兩平行線中的一條垂直,則必與另一條也垂直.

           

          查看答案和解析>>

          小明做了兩道題,事件A為“做對第一個”,事件B為“做對第二個”,其中“做對第一個”與“做對第二個”的概率都是,下列說法正確的是(  )

              A.小明做對其中一個的概率為

              B.事件A與事件B為互斥事件

              C.A∩B={兩個題都做對}

              D.事件A與事件B必然要發(fā)生一個

               

          查看答案和解析>>

          為了解某中學(xué)生遵守《中華人民共和國交通安全法》的情況,調(diào)查部門在該校進(jìn)行了如下的隨機(jī)調(diào)查,向被調(diào)查者提出兩個問題:(1)你的學(xué)號是奇數(shù)嗎?(2)在過路口時(shí)你是否闖過紅燈?要求被調(diào)查者背對著調(diào)查人員拋擲一枚硬幣,如果出現(xiàn)正面,就回答第一個問題,否則就回答第二個問題.被調(diào)查者不必告訴調(diào)查人員自己回答的是哪一個問題,只需回答“是”或“不是”,因?yàn)橹挥姓{(diào)查者本人知道回答了哪一個問題,所以都如實(shí)地做了回答.結(jié)果被調(diào)查的800人(學(xué)號從1至800)中有240人回答了“是”.由此可以估計(jì)這800人中闖過紅燈的人數(shù)是( 。

          查看答案和解析>>

           

          說明:1.參考答案與評分標(biāo)準(zhǔn)指出了每道題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識點(diǎn)和能力比照評分標(biāo)準(zhǔn)給以相應(yīng)的分?jǐn)?shù).

                2.對解答題中的計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時(shí),如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分?jǐn)?shù)不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯誤,就不再給分.

                3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

          4.只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

           

          一、選擇題:本大題考查基本知識和基本運(yùn)算.共8小題,每小題5分,滿分40分.

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          答案

          A

          C

          B

          C

          B

          A

          D

          D

           

          二、填空題:本大題共7小題,每小題5分,滿分30分.其中13~15題是選做題,考生只能選做二題,三題全答的,只計(jì)算前二題得分.第12題第1個空3分,第2個空2分.

          9.2          10.79         11.0 或 2       12.16,

          13.1         14.3          15.6

          三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

          16.(本小題主要考查三角函數(shù)性質(zhì)和三角函數(shù)的基本關(guān)系等知識,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及運(yùn)算求解能力)

          解:(1)

                           .                

          ,

          ∴函數(shù)的值域?yàn)?sub>.                                     

          (2)∵,,∴

          都為銳角,∴,

                              

                            

                     

          的值為.                                      

           

          17.(本小題主要考查空間線面關(guān)系、幾何體的表面積與體積等基本知識,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力)

          解:(1)設(shè),∵幾何體的體積為,

          ,                      

          ,

          ,解得

          的長為4.                                           

          (2)在線段上存在點(diǎn),使直線垂直.     

          以下給出兩種證明方法:

          方法1:過點(diǎn)的垂線交于點(diǎn),過點(diǎn) 

          于點(diǎn)

          ,,

          平面

          平面,∴

          ,∴平面

          平面,∴.      

          在矩形中,∵

          ,即,∴

          ,∴,即,∴

          中,∵,∴

          由余弦定理,得

          ∴在線段上存在點(diǎn),使直線垂直,且線段的長為

          方法2:以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在的直線為軸,軸,軸建立如圖的空間直角坐標(biāo)系,由已知條件與(1)可知,,,,  

          假設(shè)在線段上存在點(diǎn)≤2,,0≤

          使直線垂直,過點(diǎn)于點(diǎn)

           

          ,得,

          ,

          ,∴

          ,∴.       

          此時(shí)點(diǎn)的坐標(biāo)為,在線段上.

          ,∴

          ∴在線段上存在點(diǎn),使直線垂直,且線段的長為

          18.(本小題主要考查等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式等基礎(chǔ)知識,考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學(xué)思想方法,以及推理論證能力和運(yùn)算求解能力)

          解:設(shè)等比數(shù)列的首項(xiàng)為,公比為

          ,,成等差數(shù)列,

          ,∴

          解得.             

          當(dāng)時(shí),∵,,,         

          ∴當(dāng)時(shí),,不成等差數(shù)列.

          當(dāng)時(shí),,,成等差數(shù)列.下面給出兩種證明方法.

          證法1:∵

                                      

                                      ,

          ∴當(dāng)時(shí),,成等差數(shù)列.

          證法2:∵,          

                        , 

          ∴當(dāng)時(shí),,成等差數(shù)列. 

          19.(本小題主要考查等可能事件、互斥事件和獨(dú)立重復(fù)試驗(yàn)等基礎(chǔ)知識,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及推理論證能力和運(yùn)算求解能力)

          解:(1)∵一次摸球從個球中任選兩個,有種選法,                         

          任何一個球被選出都是等可能的,其中兩球顏色相同有種選法,

          ∴一次摸球中獎的概率.             

          (2)若,則一次摸球中獎的概率,                  

          三次摸球是獨(dú)立重復(fù)試驗(yàn),三次摸球恰有一次中獎的概率是

          .                                    

          (3)設(shè)一次摸球中獎的概率為,則三次摸球恰有一次中獎的概率為,,

          ,

          上為增函數(shù),在上為減函數(shù).              

          ∴當(dāng)時(shí),取得最大值.

          ,

          解得

          故當(dāng)時(shí),三次摸球恰有一次中獎的概率最大.                 

           

          20.(本小題主要考查函數(shù)的性質(zhì)、函數(shù)與導(dǎo)數(shù)等知識,考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學(xué)思想方法,以及抽象概括能力、推理論證能力和運(yùn)算求解能力)

          (1)解法1:∵,其定義域?yàn)?sub>,  

          .                

          是函數(shù)的極值點(diǎn),∴,即.                                         

          ,∴.                                               

          經(jīng)檢驗(yàn)當(dāng)時(shí),是函數(shù)的極值點(diǎn),

          .                                             

          解法2:∵,其定義域?yàn)?sub>,

          .               

          ,即,整理,得

          ,

          的兩個實(shí)根(舍去),,

          當(dāng)變化時(shí),,的變化情況如下表:

          0

          極小值

          依題意,,即,

          ,∴.                           

          (2)解:對任意的都有成立等價(jià)于對任意的都有.                       

          當(dāng)[1,]時(shí),

          同步練習(xí)冊答案