日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A. 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
          π3
          )=4
          的距離的最小值是
           

          B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
           

          C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實(shí)數(shù)a的取值范圍是:
           

          B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若
          PB
          PA
          =
          1
          2
          PC
          PD
          =
          1
          3
          ,則
          BC
          AD
          的值為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
          x=3+2
          2
          cosθ
          y=-1+2
          2
          sinθ
          (θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
          2
          cosθ-sinθ
          ,則曲線C上到直線l距離為
          2
          的點(diǎn)的個(gè)數(shù)為:
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)
          函數(shù)f(x)=x2-x-a2+a+1對(duì)于任一實(shí)數(shù)x,均有f(x)≥0.則實(shí)數(shù)a滿足的條件是
           

          B.(幾何證明選做題)
          如圖,圓O是△ABC的外接圓,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
          3
          ,AB=BC=4,則AC的長(zhǎng)為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)
          在極坐標(biāo)系中,曲線ρ=4cos(θ-
          π
          3
          )
          上任意兩點(diǎn)間的距離的最大值為
           

          查看答案和解析>>

          精英家教網(wǎng)A.不等式
          x-2
          x2+3x+2
          >0
          的解集是
           

          B.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn),過(guò)P作⊙O的切線,切點(diǎn)為CPC=2
          3
          ,若∠CAP=30°,則⊙O的直徑AB=
           

          C.(極坐標(biāo)系與參數(shù)方程選做題)若圓C:
          x=1+
          2
          cosθ
          y=2+
          2
          sinθ
          (θ為參數(shù))
          與直線x-y+m=0相切,則m=
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
           


          B.(幾何證明選做題)如圖,直線PC與圓O相切于點(diǎn)C,割線PAB經(jīng)過(guò)圓心O,
          弦CD⊥AB于點(diǎn)E,PC=4,PB=8,則CE=
           

          C.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
          π
          4
          )=2
          2
          的距離為
           

          查看答案和解析>>

          一、選擇題

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          A

          C

          B

          A

          D

          B

          A

          A

          C

          C

          D

          D

          12.提示:由于是中點(diǎn),中,,,

          所以,所以

          二、填空題

          13.    14.  52    15.      16. 18

          16.提示:由可得,則,所以,所以,,所以;當(dāng)且僅當(dāng)時(shí)成立

          三、解答題

          17.解:由

                (3分)

                       (6分)

          (2)由(1)知      (8分)

             (10分)

                                    (13分)

          18.解:,    (2分)

          ,得     (4分)

                             (5分)

          由于,于是有:

          (1)當(dāng)時(shí),不等式的解集為      (8分)

          (2)當(dāng)時(shí),不等式的解集為         (11分)

          (3)當(dāng)時(shí),不等式的解集為             (13分)

          19.解:(Ⅰ)由成等差數(shù)列,

          ,        (2分)

                   (5分)

          (Ⅱ) (7分)

                   (9分)

                       (11分)

               (12分)

          20.解:(1)由題,         (2分)

          等差數(shù)列的公差       (4分)

               (5分)

          (2)

                ①

              ②       (7分)

          則②-①可得:

              (9分)

                               (11分)

                           (12分)

           

          21.解:(1)由為奇函數(shù),則,所以,得:   (3分)

          (2)由(1)可知           (5分)

           

          所以              (7分)

          (3)由得:

                    (8分)

            

          下求:令, 由于

                   (10分)

          當(dāng)時(shí),均遞增,所以遞增,

          所以當(dāng)時(shí)取最大值為       所以           (12分)

          22.解:(Ⅰ)     (1分)

          當(dāng)時(shí),

          ,即是等比數(shù)列.                 (3分)

           ∴;                          (4分)

          (Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,

           則有

          ,解得,  

          再將代入得成立,

          所以.                                    (8分)

          (III)證明:由(Ⅱ)知,所以

          ,   

          所以,      

          從而

          .                            (12分)

           


          同步練習(xí)冊(cè)答案