日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 同理可得在和上單調遞增.綜合以上得(略). --------------------------6分 查看更多

           

          題目列表(包括答案和解析)

          如圖,,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

          (1)寫出、之間的等量關系,以及、之間的等量關系;

          (2)求證:);

          (3)設,對所有,恒成立,求實數(shù)的取值范圍.

          【解析】第一問利用有,得到

          第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及,

          第三問 

          .………………………2分

          因為函數(shù)在區(qū)間上單調遞增,所以當時,最大為,即

          解:(1)依題意,有,,………………4分

          (2)證明:①當時,可求得,命題成立; ……………2分

          ②假設當時,命題成立,即有,……………………1分

          則當時,由歸納假設及,

          解得不合題意,舍去)

          即當時,命題成立.  …………………………………………4分

          綜上所述,對所有,.    ……………………………1分

          (3) 

          .………………………2分

          因為函數(shù)在區(qū)間上單調遞增,所以當時,最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>

          已知函數(shù).(

          (1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;

          (2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

          【解析】第一問中,首先利用在區(qū)間上單調遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

          解:(1)在區(qū)間上單調遞增,

          在區(qū)間上恒成立.  …………3分

          ,而當時,,故. …………5分

          所以.                 …………6分

          (2)令,定義域為

          在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

                  …………9分

          ① 若,令,得極值點,

          ,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

          ,即時,同理可知,在區(qū)間上遞增,

          ,也不合題意;                     …………11分

          ② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

          要使在此區(qū)間上恒成立,只須滿足,

          由此求得的范圍是.        …………13分

          綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

           

          查看答案和解析>>

          .函數(shù)f(x)=
          x2-x4
          |x-2|-2
          .給出函數(shù)f(x)下列性質:(1)f(x)的定義域和值域均為[-1,1];(2)f(x)是奇函數(shù);(3)函數(shù)在定義域上單調遞增;(4)函數(shù)f(x)有兩零點;(5)A、B為函數(shù)f(x)圖象上任意不同兩點,則
          2
          <|AB|≤2
          .則函數(shù)f(x)有關性質中正確描述的個數(shù)是( 。

          查看答案和解析>>

          函數(shù)f(x)=
          x2-x4
          |x-2|-2
          .給出函數(shù)f(x)下列性質:(1)函數(shù)的定義域和值域均為[-1,1];(2)函數(shù)的圖象關于原點成中心對稱;(3)函數(shù)在定義域上單調遞增;(4)Af(x)dx=0(其中A為函數(shù)的定義域);(5)A、B為函數(shù)f(x)圖象上任意不同兩點,則
          2
          <|AB|≤2
          .請寫出所有關于函數(shù)f(x)性質正確描述的序號
          (2)(4)
          (2)(4)

          查看答案和解析>>

          定義在R上的連續(xù)可導函數(shù)y=f(x),其導函數(shù)為y=f'(x),下列條件是“f(x)在R上單調遞增”的充分不必要條件的是( 。

          查看答案和解析>>


          同步練習冊答案