日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)若的重心是,求直線的方程,(三角形重心是三角形三條中線的交點(diǎn).并且重心到頂點(diǎn)的距離是它到對邊中點(diǎn)距離的兩倍) 查看更多

           

          題目列表(包括答案和解析)

          橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
          (1)求橢圓和拋物線的方程;
          (2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
          (3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.

          查看答案和解析>>

          橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
          (1)求橢圓和拋物線的方程;
          (2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
          (3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.

          查看答案和解析>>

          已知雙曲線的中心在原點(diǎn)O,其中一條準(zhǔn)線方程為x=
          3
          2
          ,且與橢圓
          x2
          25
          +
          y2
          13
          =1
          有共同的焦點(diǎn).
          (1)求此雙曲線的標(biāo)準(zhǔn)方程;
          (2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),試問:是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過點(diǎn)O?若存在,求出k的值,若不存在,請說明理由.
          (重點(diǎn)中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),C是直線L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線)試問:是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

          查看答案和解析>>

          已知雙曲線的中心在原點(diǎn)O,其中一條準(zhǔn)線方程為,且與橢圓有共同的焦點(diǎn).
          (1)求此雙曲線的標(biāo)準(zhǔn)方程;
          (2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),試問:是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過點(diǎn)O?若存在,求出k的值,若不存在,請說明理由.
          (重點(diǎn)中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),C是直線L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線)試問:是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

          查看答案和解析>>

          已知雙曲線的中心在原點(diǎn)O,其中一條準(zhǔn)線方程為x=
          3
          2
          ,且與橢圓
          x2
          25
          +
          y2
          13
          =1
          有共同的焦點(diǎn).
          (1)求此雙曲線的標(biāo)準(zhǔn)方程;
          (2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),試問:是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過點(diǎn)O?若存在,求出k的值,若不存在,請說明理由.
          (重點(diǎn)中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),C是直線L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線)試問:是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

          查看答案和解析>>

          1、C  2、A  3、C  4、A  5、C  6、B  7、B  8、D  9、A  10、C  11、B  12、D

          13、1.56   14、5   15、

           16、(1)斜面的中面面積等于斜面面積的四分之一;(2)三個(gè)直角面面積的平方和等于斜面面積的平方;(3)斜面與三個(gè)直角面所成二面角的余弦平方和等于1,等等

          17、解: (Ⅰ)   =
            =   =   =

            (Ⅱ) ∵   ∴ ,
            又∵   ∴   當(dāng)且僅當(dāng) b=c=時(shí),bc=,故bc的最大值是.

          18、

          19、(1)證明:底面           

                    

          平面平面

          (2)解:因?yàn)?sub>,且,

                可求得點(diǎn)到平面的距離為

          (3)解:作,連,則為二面角的平面角

                設(shè),,在中,求得

          同理,,由余弦定理

          解得, 即=1時(shí),二面角的大小為

          20、

          21、解:設(shè)

          由題意可得:

                                           

          相減得:

                                           

          ∴直線的方程為,即

          (2)設(shè),代入圓的方程整理得:

          是上述方程的兩根

                       

          同理可得:     

          .                             

          22、解:(1)由題意,在[]上遞減,則解得  

          所以,所求的區(qū)間為[-1,1]        

          (2)取,即不是上的減函數(shù)

          不是上的增函數(shù)

          所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)

          (3)若是閉函數(shù),則存在區(qū)間[],在區(qū)間[]上,函數(shù)的值域?yàn)閇],即,為方程的兩個(gè)實(shí)數(shù)根,

          即方程有兩個(gè)不等的實(shí)根

          當(dāng)時(shí),有,解得

          當(dāng)時(shí),有,無解

          綜上所述,

           

           

           


          同步練習(xí)冊答案