日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文)過拋物線的焦點(diǎn)作直線交拋物線于...兩點(diǎn).若.則等于( ) A.4p B.5p C.6p D.8p 查看更多

           

          題目列表(包括答案和解析)

          (08年黃岡市質(zhì)檢文) (13分) 過拋物線的焦點(diǎn)作直線與拋物線交于、.

          ⑴求證:△不是直角三角形;

          ⑵當(dāng)的斜率為時(shí),拋物線上是否存在點(diǎn),使△為直角三角形且為直角(軸下方)?若存在,求出所有的點(diǎn);若不存在,說明理由.

          查看答案和解析>>

          (文)已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點(diǎn)O作傾斜角為數(shù)學(xué)公式的直線,交l于點(diǎn)A,交⊙M于另一點(diǎn)B,且AO=OB=2.
          (Ⅰ)求⊙M和拋物線C的標(biāo)準(zhǔn)方程;
          (Ⅱ)過圓心M的直線交拋物線C于P、Q兩點(diǎn),問數(shù)學(xué)公式是否為定值,若是定值,求出該定值.

          查看答案和解析>>

          (文)已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點(diǎn)O作傾斜角為的直線,交l于點(diǎn)A,交⊙M于另一點(diǎn)B,且AO=OB=2.
          (Ⅰ)求⊙M和拋物線C的標(biāo)準(zhǔn)方程;
          (Ⅱ)過圓心M的直線交拋物線C于P、Q兩點(diǎn),問是否為定值,若是定值,求出該定值.

          查看答案和解析>>

          (文科學(xué)生做)過拋物線的焦點(diǎn)F作一直線交拋物線于P、Q兩點(diǎn),若線段PF與FQ的長分別為p、q,則等于            (   ) 

             A.          B.       C.       D.

           

          查看答案和解析>>

          (08年哈師大附中文) 過拋物線的焦點(diǎn)作一條直線與拋物線相交于兩點(diǎn),且,則這樣的直線有

             A.一條    B.兩條    C.三條    D.不存在

          查看答案和解析>>

          1.A 2.B 3.B 4.D 5.(理)C。ㄎ模〢 6.B 7.A 8.B 9.A 

          10.B 11.(理)A (文)C 12.B 13.(理)。ㄎ模25,60,15 

          14.-672 15.2.5小時(shí) 16.①,④

            17.解析:設(shè)fx)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x)因?yàn)?sub>,,所以,由x的任意性得fx)的圖象關(guān)于直線x=1對稱,若m>0,則x≥1時(shí),fx)是增函數(shù),若m<0,則x≥1時(shí),fx)是減函數(shù).

            ∵ ,,,

          ,

            ∴ 當(dāng)時(shí),

          ,

            ∵ , ∴ 

            當(dāng)時(shí),同理可得

            綜上:的解集是當(dāng)時(shí),為;

            當(dāng)時(shí),為,或

            18.解析:(理)(1)設(shè)甲隊(duì)在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊(duì)獲勝,前四場比賽甲隊(duì)獲勝三場

            依題意得

            (2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

            ∴ 

           。ㄎ模┰O(shè)甲袋內(nèi)恰好有4個(gè)白球?yàn)槭录?i>B,則B包含三種情況.

            ①甲袋中取2個(gè)白球,且乙袋中取2個(gè)白球,②甲袋中取1個(gè)白球,1個(gè)黑球,且乙袋中取1個(gè)白球,1個(gè)黑球,③甲、乙兩袋中各取2個(gè)黑球.

            ∴ 

            19.解析:(甲)(1)建立如圖坐標(biāo)系:O為△ABC的重心,直線OPz軸,ADy軸,x軸平行于CB,

            得A(0,,0)、B(1,,0)、D(0,,0)、E(0,,).

            (2),,,

            設(shè)ADBE所成的角為,則

           ∴ 

           。ㄒ遥1)取中點(diǎn)E,連結(jié)ME、

            ∴ ,MCEC. ∴ MC. ∴ ,MC,N四點(diǎn)共面.

            (2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

            ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

            ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

           。3)連結(jié),由是正方形,知

            ∵ MC, ∴ ⊥平面

            ∴ 平面⊥平面

           。4)∠與平面所成的角且等于45°.

            20.解析:(1)

            ∵ x≥1. ∴ 

            當(dāng)x≥1時(shí),是增函數(shù),其最小值為

            ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

           。2),即27-6a-3=0, ∴ a=4.

            ∴ 有極大值點(diǎn),極小值點(diǎn)

            此時(shí)fx)在,上時(shí)減函數(shù),在,+上是增函數(shù).

            ∴ fx)在,上的最小值是,最大值是,(因).

            21.解析:(1)∵ 斜率k存在,不妨設(shè)k>0,求出M,2).直線MA方程為,直線MB方程為

            分別與橢圓方程聯(lián)立,可解出,

            ∴ . ∴ (定值).

           。2)設(shè)直線AB方程為,與聯(lián)立,消去y

            由D>0得-4<m<4,且m≠0,點(diǎn)MAB的距離為

            設(shè)△AMB的面積為S. ∴ 

            當(dāng)時(shí),得

            22.解析:(1)∵ ,a,,

            ∴   ∴   ∴ 

            ∴ 

            ∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.

           。2),,由可得

            . ∴ 

            ∴ b=5

           。3)由(2)知, ∴ 

            ∴ . ∴ 

            ∵ ,

            當(dāng)n≥3時(shí),

            

               

            

            

            ∴ . 綜上得 

           


          同步練習(xí)冊答案