日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22.已知等差數(shù)列的首項(xiàng)為a.公差為b,等比數(shù)列的首項(xiàng)為b.公比為a.其中a..且. (1)求a的值, 查看更多

           

          題目列表(包括答案和解析)

          已知等差數(shù)列的首項(xiàng)為a,公差為b;等比數(shù)列的首項(xiàng)為b,公比為a,其中a,,且

           。1)求a的值;

            (2)若對(duì)于任意,總存在,使,求b的值;

            (3)在(2)中,記是所有中滿足的項(xiàng)從小到大依次組成的數(shù)列,又記的前n項(xiàng)和,的前n項(xiàng)和,求證:

          查看答案和解析>>

          已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a,其中a,b都是大于1的正整數(shù),且

          (1)求a的值;

              (2)若對(duì)于任意的,總存在,使得成立,求b的值;

              (3)令,問數(shù)列中是否存在連續(xù)三項(xiàng)成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a,其中a、b都是大于1的正整數(shù),且
          ①求a的值;
          ②對(duì)于任意的,總存在,使得成立,求b;
          ③令,問數(shù)列中是否存在連續(xù)三項(xiàng)成等比數(shù)列,若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng),若不存在,請(qǐng)說明理由。(14分)

          查看答案和解析>>

          已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a,其中a,b均為正整數(shù),若。

          (1)求、的通項(xiàng)公式;

          (2)若成等比數(shù)列,求數(shù)列的通項(xiàng)公式。

          (3)設(shè)的前n項(xiàng)和為,求當(dāng)最大時(shí),n的值。

           

          查看答案和解析>>

          已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為,公比為a,其中,則a的值為  (    )

              A.1    B.2    C.3    D.4

           

          查看答案和解析>>

          1.A 2.B 3.B 4.D 5.(理)C。ㄎ模〢 6.B 7.A 8.B 9.A 

          10.B 11.(理)A。ㄎ模〤 12.B 13.(理) (文)25,60,15 

          14.-672 15.2.5小時(shí) 16.①,④

            17.解析:設(shè)fx)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x)因?yàn)?sub>,,所以,由x的任意性得fx)的圖象關(guān)于直線x=1對(duì)稱,若m>0,則x≥1時(shí),fx)是增函數(shù),若m<0,則x≥1時(shí),fx)是減函數(shù).

            ∵ ,,,,

          ,

            ∴ 當(dāng)時(shí),

          ,

            ∵ , ∴ 

            當(dāng)時(shí),同理可得

            綜上:的解集是當(dāng)時(shí),為;

            當(dāng)時(shí),為,或

            18.解析:(理)(1)設(shè)甲隊(duì)在第五場(chǎng)比賽后獲得冠軍為事件M,則第五場(chǎng)比賽甲隊(duì)獲勝,前四場(chǎng)比賽甲隊(duì)獲勝三場(chǎng)

            依題意得

            (2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場(chǎng)獲得冠軍四種情況,且它們被彼此互斥.

            ∴ 

           。ㄎ模┰O(shè)甲袋內(nèi)恰好有4個(gè)白球?yàn)槭录?i>B,則B包含三種情況.

           、偌状腥2個(gè)白球,且乙袋中取2個(gè)白球,②甲袋中取1個(gè)白球,1個(gè)黑球,且乙袋中取1個(gè)白球,1個(gè)黑球,③甲、乙兩袋中各取2個(gè)黑球.

            ∴ 

            19.解析:(甲)(1)建立如圖坐標(biāo)系:O為△ABC的重心,直線OPz軸,ADy軸,x軸平行于CB,

            得A(0,,0)、B(1,,0)、D(0,,0)、E(0,,).

           。2),,,,

            設(shè)ADBE所成的角為,則

           ∴ 

           。ㄒ遥1)取中點(diǎn)E,連結(jié)ME、

            ∴ ,MCEC. ∴ MC. ∴ ,M,C,N四點(diǎn)共面.

            (2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

            ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

            ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

            (3)連結(jié),由是正方形,知

            ∵ MC, ∴ ⊥平面

            ∴ 平面⊥平面

           。4)∠與平面所成的角且等于45°.

            20.解析:(1)

            ∵ x≥1. ∴ ,

            當(dāng)x≥1時(shí),是增函數(shù),其最小值為

            ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

           。2),即27-6a-3=0, ∴ a=4.

            ∴ 有極大值點(diǎn),極小值點(diǎn)

            此時(shí)fx)在,上時(shí)減函數(shù),在,+上是增函數(shù).

            ∴ fx)在,上的最小值是,最大值是,(因).

            21.解析:(1)∵ 斜率k存在,不妨設(shè)k>0,求出M,2).直線MA方程為,直線MB方程為

            分別與橢圓方程聯(lián)立,可解出,

            ∴ . ∴ (定值).

           。2)設(shè)直線AB方程為,與聯(lián)立,消去y

            由D>0得-4<m<4,且m≠0,點(diǎn)MAB的距離為

            設(shè)△AMB的面積為S. ∴ 

            當(dāng)時(shí),得

            22.解析:(1)∵ ,a,

            ∴   ∴   ∴ 

            ∴ 

            ∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.

           。2),由可得

            . ∴ 

            ∴ b=5

           。3)由(2)知, ∴ 

            ∴ . ∴ ,

            ∵ ,

            當(dāng)n≥3時(shí),

            

               

            

            

            ∴ . 綜上得 

           


          同步練習(xí)冊(cè)答案