日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解: ⑴設(shè)C.則G(,). 查看更多

           

          題目列表(包括答案和解析)

          選考題
          請(qǐng)從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計(jì)分,請(qǐng)?jiān)诖痤}卷上注明題號(hào).
          22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
          (1)解不等式f(x)≤5x+1;
          (2)若g(x)=
          1
          f(x)+m
          定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
          22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
          (1)求證:BE=2AD;
          (2)當(dāng)AC=1,BC=2時(shí),求AD的長(zhǎng).
          22-3已知P為半圓C:
          x=cosθ
          y=sinθ
          (θ為參數(shù),0≤θ≤π)
          上的點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與半圓C上的弧AP的長(zhǎng)度均為
          π
          3

          (1)求以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo);
          (2)求直線AM的參數(shù)方程.

          查看答案和解析>>

          對(duì)于一般的三次函數(shù)f(x)=ax3+bx2+cx+d,(a≠0)定義:設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的導(dǎo)數(shù).若f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”,現(xiàn)已知:g(x)=(x-a)(x-b)(x-c),請(qǐng)解答下列問(wèn)題:
          (Ⅰ).若y=g(x)是R上的增函數(shù),求證a=b=c;
          (Ⅱ)在(Ⅰ).的條件下,求函數(shù)y=g(x)的“拐點(diǎn)”A的坐標(biāo),并證明函數(shù)y=g(x)的圖象關(guān)于“拐點(diǎn)”A成中心對(duì)稱.

          查看答案和解析>>

          對(duì)于一般的三次函數(shù)f(x)=ax3+bx2+cx+d,(a≠0)定義:設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的導(dǎo)數(shù).若f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”,現(xiàn)已知:g(x)=(x-a)(x-b)(x-c),請(qǐng)解答下列問(wèn)題:
          (Ⅰ).若y=g(x)是R上的增函數(shù),求證a=b=c;
          (Ⅱ)在(Ⅰ).的條件下,求函數(shù)y=g(x)的“拐點(diǎn)”A的坐標(biāo),并證明函數(shù)y=g(x)的圖象關(guān)于“拐點(diǎn)”A成中心對(duì)稱.

          查看答案和解析>>

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設(shè)切點(diǎn)為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過(guò)點(diǎn)A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案