日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(I)依題意.圓心的軌跡是以為焦點.為準線的拋物線上--2分 查看更多

           

          題目列表(包括答案和解析)

          復數(shù)z滿足條件|2z+1|=|z-i|,那么z對應點的軌跡是


          1. A.
          2. B.
            橢圓
          3. C.
            雙曲線
          4. D.
            拋物線

          查看答案和解析>>

          袋子中裝有大小形狀完全相同的m個紅球和n個白球,其中m,n滿足m>n≥2且m+n≤l0(m,n∈N+),若從中取出2個球,取出的2個球是同色的概率等于取出的2個球是異色的概率.

          (Ⅰ) 求m,n的值;

          (Ⅱ) 從袋子中任取3個球,設取到紅球的個數(shù)為,求的分布列與數(shù)學期望.

          【解析】第一問中利用,解得m=6,n=3.

          第二問中,的取值為0,1,2,3. P(=0)= ,     P(=1)=

          P(=2)= ,   P(=3)=

          得到分布列和期望值

          解:(I)據(jù)題意得到        解得m=6,n=3.

          (II)的取值為0,1,2,3.

          P(=0)= ,     P(=1)=

          P(=2)= ,   P(=3)=

          的分布列為

          所以E=2

           

          查看答案和解析>>

          如圖,,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

          (1)寫出之間的等量關系,以及之間的等量關系;

          (2)求證:);

          (3)設,對所有,恒成立,求實數(shù)的取值范圍.

          【解析】第一問利用有,得到

          第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及,

          第三問 

          .………………………2分

          因為函數(shù)在區(qū)間上單調遞增,所以當時,最大為,即

          解:(1)依題意,有,………………4分

          (2)證明:①當時,可求得,命題成立; ……………2分

          ②假設當時,命題成立,即有,……………………1分

          則當時,由歸納假設及,

          解得不合題意,舍去)

          即當時,命題成立.  …………………………………………4分

          綜上所述,對所有.    ……………………………1分

          (3) 

          .………………………2分

          因為函數(shù)在區(qū)間上單調遞增,所以當時,最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>

          (1)若橢圓的方程是:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),它的左、右焦點依次為F1、F2,P是橢圓上異于長軸端點的任意一點.在此條件下我們可以提出這樣一個問題:“設△PF1F2的過P角的外角平分線為l,自焦點F2引l的垂線,垂足為Q,試求Q點的軌跡方程?”
          對該問題某同學給出了一個正確的求解,但部分解答過程因作業(yè)本受潮模糊了,我們在
          精英家教網(wǎng)
          這些模糊地方劃了線,請你將它補充完整.
          解:延長F2Q 交F1P的延長線于E,據(jù)題意,
          E與F2關于l對稱,所以|PE|=|PF2|.
          所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
           

          在△EF1F2中,顯然OQ是平行于EF1的中位線,
          所以|OQ|=
          1
          2
          |EF1|=
           
          ,
          注意到P是橢圓上異于長軸端點的點,所以Q點的軌跡是
           
          ,
          其方程是:
           

          (2)如圖2,雙曲線的方程是:
          x2
          a2
          -
          y2
          b2
          =1(a,b>0),它的左、右焦點依次為F1、F2,P是雙曲線上異于實軸端點的任意一點.請你試著提出與(1)類似的問題,并加以證明.

          查看答案和解析>>

          (2009•大連二模)已知定點A(0,2),B(0,-2),C(2,0),動點P滿足:
          AP
          BP
          =m|
          pc
          |2

          (I)求動點P的軌跡方程,并說明方程表示的曲線類型;
          (II)當m=2時,設點P(x,y)(y≥0),求
          y
          x-8
          的取值范圍.

          查看答案和解析>>


          同步練習冊答案