日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解析:(1)①由條件知PQ垂直平分AB. 查看更多

           

          題目列表(包括答案和解析)

          如圖是單位圓上的點(diǎn),分別是圓軸的兩交點(diǎn),為正三角形.

          (1)若點(diǎn)坐標(biāo)為,求的值;

          (2)若,四邊形的周長(zhǎng)為,試將表示成的函數(shù),并求出的最大值.

          【解析】第一問(wèn)利用設(shè) 

          ∵  A點(diǎn)坐標(biāo)為∴   ,

          (2)中 由條件知  AB=1,CD=2 ,

          中,由余弦定理得 

            ∴ 

          ∵       ∴   

          ∴  當(dāng)時(shí),即 當(dāng) 時(shí) , y有最大值5. .

           

          查看答案和解析>>

          設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

          (1)求正實(shí)數(shù)a的取值范圍;

          (2)比較的大小,說(shuō)明理由;

          (3)求證:(n∈N*, n≥2)

          【解析】第一問(wèn)中,利用

          解:(1)由已知:,依題意得:≥0對(duì)x∈[1,+∞恒成立

          ∴ax-1≥0對(duì)x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

          (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

          ∴n≥2時(shí):f()=

            

           (3)  ∵   ∴

           

          查看答案和解析>>

          已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

          (I)求橢圓的方程;

          (II)若過(guò)點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)的取值范圍.

          【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。

          第一問(wèn)中,利用

          第二問(wèn)中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

          解:(1)由題意知

           

          查看答案和解析>>

          設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)記曲線在點(diǎn)(其中)處的切線為軸、軸所圍成的三角形面積為,求的最大值.

          【解析】第一問(wèn)利用由已知,所以,

          ,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;

          第二問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線在點(diǎn)處切線為.

          切線軸的交點(diǎn)為,與軸的交點(diǎn)為,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以,  

          , 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時(shí),有最大值,此時(shí),

          解:(Ⅰ)由已知,所以, 由,得,  所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 

          在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;  

          即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

          (Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線在點(diǎn)處切線為.

          切線軸的交點(diǎn)為,與軸的交點(diǎn)為,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以,  

          , 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時(shí),有最大值,此時(shí)

          所以,的最大值為

           

          查看答案和解析>>

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1 (a>b>0)與直線x+y-1=0相交于A,B兩點(diǎn).
          (1)當(dāng)橢圓的半焦距c=1,且a2,b2,c2成等差數(shù)列時(shí),求橢圓的方程;
          (2)在(1)的條件下,求弦AB的長(zhǎng)度;
          (3)當(dāng)橢圓的離心率e滿足
          3
          3
          ≤e≤
          2
          2
          ,且以AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,求橢圓長(zhǎng)軸長(zhǎng)的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案