日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn)A(7.0)在曲線上.且曲線C在點(diǎn)A處的切線與直線垂直.又當(dāng)時(shí).函數(shù)有最小值. (I)求實(shí)數(shù)a.b.c的值, 查看更多

           

          題目列表(包括答案和解析)

          已知雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的離心率e=
          2
          且點(diǎn)P(3,
          7
          )
          在雙曲線C上.
          (1)求雙曲線C的方程;
          (2)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為2
          2
          ,求直線l的方程.

          查看答案和解析>>

          已知雙曲線的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)為F1(-
          7
          ,0),F(xiàn)2
          7
          ,0),點(diǎn)P是此雙曲線上的一點(diǎn),且
          PF1
          PF2
          =0,|
          PF1
          |•|
          PF2
          |=4,該雙曲線的標(biāo)準(zhǔn)方程是( 。
          A.
          x2
          4
          -
          y2
          3
          =1
          B.
          x2
          3
          -
          y2
          4
          =1
          C.
          x2
          5
          -
          y2
          2
          =1
          D.
          x2
          2
          -
          y2
          5
          =1

          查看答案和解析>>

          已知雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的離心率e=
          2
          且點(diǎn)P(3,
          7
          )
          在雙曲線C上.
          (1)求雙曲線C的方程;
          (2)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為2
          2
          ,求直線l的方程.

          查看答案和解析>>

          (2011•洛陽二模)已知雙曲線的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)為F1(-
          7
          ,0),F(xiàn)2
          7
          ,0),點(diǎn)P是此雙曲線上的一點(diǎn),且
          PF1
          PF2
          =0,|
          PF1
          |•|
          PF2
          |=4,該雙曲線的標(biāo)準(zhǔn)方程是( 。

          查看答案和解析>>

          已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過點(diǎn)(4,-
          10
          )
          ,A點(diǎn)坐標(biāo)為(0,2),則雙曲線上距點(diǎn)A距離最短的點(diǎn)的坐標(biāo)是
          7
          ,1)
          7
          ,1)

          查看答案和解析>>

          一,選擇題:           

           D C B CC,     CA BC B

          二、填空題:

          (11),     -3,         (12), 27      (13),

          (14), .       (15),   -26,14,65

          三、解答題:

            16,   由已知得;所以解集:;

          17, (1)由題意,=1又a>0,所以a=1.

                (2)g(x)=,當(dāng)時(shí),,無遞增區(qū)間;當(dāng)x<1時(shí),,它的遞增區(qū)間是

              綜上知:的單調(diào)遞增區(qū)間是

          18, (1)當(dāng)0<t≤10時(shí),

          是增函數(shù),且f(10)=240

          當(dāng)20<t≤40時(shí),是減函數(shù),且f(20)=240  所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。(3)當(dāng)0<t≤10時(shí),令,則t=4  當(dāng)20<t≤40時(shí),令,則t≈28.57 

          則學(xué)生注意力在180以上所持續(xù)的時(shí)間28.57-4=24.57>24

          從而教師可以第4分鐘至第28.57分鐘這個(gè)時(shí)間段內(nèi)將題講完。

          19, (I)……1分

                 根據(jù)題意,                                                 …………4分

                 解得.                                                            …………7分

             (II)因?yàn)?sub>……7分

             (i)時(shí),函數(shù)無最大值,

                     不合題意,舍去.                                                                  …………11分

             (ii)時(shí),根據(jù)題意得

                    

                 解之得                                                                      …………13分

                 為正整數(shù),=3或4.                                                       …………14分

           

          20. (1)當(dāng)x∈[-1,0)時(shí), f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

          當(dāng)x∈[2k-1,2k),(k∈Z)時(shí),x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

          當(dāng)x∈[2k,2k+1](k∈Z)時(shí),x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

          故當(dāng)x∈[2k-1,2k+1](k∈Z)時(shí), f(x)的表達(dá)式為

            1. f(x)=

              loga[2-(x-2k)],x∈[2k,2k+1].

              (2)∵f(x)是以2為周期的周期函數(shù),且為偶函數(shù),∴f(x)的最大值就是當(dāng)x∈[0,1]時(shí)f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是減函數(shù),

              ∴[f(x)]max= f(0)= =,∴a=4.

              當(dāng)x∈[-1,1]時(shí),由f(x)>

                  得

              f(x)是以2為周期的周期函數(shù),

              f(x)>的解集為{x|2k+-2<x<2k+2-,k∈Z

              21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

              又8x f(x)4(x2+1) 對恒成立,∴a=c=2   f(x)=2(x+1)2

              (2)∵g(x)==,D={x?x-1  }

              X1=,x2=,x3=-,x4=-1,∴M={,-,-1}

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>