日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16.曲線C由兩部分組成.若過(guò)點(diǎn)(0.2)作直線l與曲線C有且僅有兩個(gè)公共點(diǎn).則直線l的斜率的取值范圍為 . 查看更多

           

          題目列表(包括答案和解析)

          已知P是圓x2+y2=9,上任意一點(diǎn),由P點(diǎn)向x軸做垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且
          PM
          =2
          MQ
          ,點(diǎn)M的軌跡為曲線C.
          (Ⅰ)求曲線C的軌跡方程;
          (Ⅱ)過(guò)點(diǎn)(0,-2)的直線l與曲線C相交于A、B兩點(diǎn),試問(wèn)在直線y=-
          1
          8
          上是否存在點(diǎn)N,使得四邊形OANB為矩形,若存在求出N點(diǎn)坐標(biāo),若不存在說(shuō)明理由.

          查看答案和解析>>

          已知P是圓x2+y2=9,上任意一點(diǎn),由P點(diǎn)向x軸做垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為曲線C.
          (Ⅰ)求曲線C的軌跡方程;
          (Ⅱ)過(guò)點(diǎn)(0,-2)的直線l與曲線C相交于A、B兩點(diǎn),試問(wèn)在直線上是否存在點(diǎn)N,使得四邊形OANB為矩形,若存在求出N點(diǎn)坐標(biāo),若不存在說(shuō)明理由.

          查看答案和解析>>

          已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為
          12
          ,橢圓的短軸端點(diǎn)和焦點(diǎn)所組成的四邊形周長(zhǎng)等于8,
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若過(guò)點(diǎn)(0,-2)的直線l與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過(guò)橢圓C的右頂點(diǎn),求直線l的方程.

          查看答案和解析>>

          (2011•邢臺(tái)一模)已知兩點(diǎn)M、N分別在直線y=mx與直線y=-mx(m>1)上運(yùn)動(dòng),且|MN|=2.動(dòng)點(diǎn)P滿足2
          OP
          =
          OM
          +
          ON
          (O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線C.
          (I)求曲線C的方程;
          (II)過(guò)點(diǎn)(0,1)作直線l與曲線C交于不同的兩點(diǎn)A、B.若對(duì)任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

          查看答案和解析>>

          已知兩點(diǎn)M、N分別在直線與直線上運(yùn)動(dòng),且|MN|=2.動(dòng)點(diǎn)P滿足(O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線C.

             (I)求曲線C的方程;

             (II)過(guò)點(diǎn)(0,1)作直線l與曲線C交于不同的兩點(diǎn)A、B.若對(duì)任意,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

           

          查看答案和解析>>

           

          一、選擇題

          1―10 ACBCB   DBCDD

          二、填空題

          11.    12.    13.―3     14.

          15.2    16.    17.<

          三、解答題:

          18.解:(I)

                

             (II)由于區(qū)間的長(zhǎng)度是為,為半個(gè)周期。

              又分別取到函數(shù)的最小值

          所以函數(shù)上的值域?yàn)?sub>。……14分

          19.解:(Ⅰ)證明:連接BD,設(shè)AC與BD相交于點(diǎn)F.

          因?yàn)樗倪呅蜛BCD是菱形,所以AC⊥BD.……………………2分

          又因?yàn)镻D⊥平面ABCD,AC平面ABCD,所以PD⊥AC.………………4分

          而AC∩BD=F,所以AC⊥平面PDB.

          E為PB上任意一點(diǎn),DE平面PBD,所以AC⊥DE.……………………6分

             (Ⅱ)連EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.

          S△ACE =AC?EF,在△ACE面積最小時(shí),EF最小,則EF⊥PB.

          S△ACE=9,×6×EF=9,解得EF=3. …………………8分

          由PB⊥EF且PB⊥AC得PB⊥平面AEC,則PB⊥EC,

          又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB。………10分

          作GH//CE交PB于點(diǎn)G,則GH⊥平面PAB,

          所以∠GEH就是EG與平面PAB所成角。   ………………12分

          在直角三角形CEB中,BC=6,

            1. 20.解:(1)

                 ………………5分

                 ………………6分

                 (2)若

                 

                 

              21.解:(1)

                 

                ………………6分

                 (2)由(1)可知

                  要使對(duì)任意   ………………14分

              22.解:(1)依題意知,拋物線到焦點(diǎn)F的距離是

                    …………4分

                 (2)設(shè)圓的圓心為

                 

                  即當(dāng)M運(yùn)動(dòng)時(shí),弦長(zhǎng)|EG|為定值4。 ………………9分

                 (III)因?yàn)辄c(diǎn)C在線段FD上,所以軸不平行,

                  可設(shè)直線l的方程為

                 

                 (1)當(dāng)時(shí),不存在這樣的直線l;

                 (2)當(dāng)   ………………16分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>