日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19. 查看更多

           

          題目列表(包括答案和解析)

          (本題滿分14分)

          已知實數(shù),曲線與直線的交點為(異于原點),在曲線 上取一點,過點平行于軸,交直線于點,過點平行于軸,交曲線于點,接著過點平行于軸,交直線于點,過點平行于軸,交曲線于點,如此下去,可以得到點,…,,… .  設(shè)點的坐標(biāo)為,.

          (Ⅰ)試用表示,并證明;   

          (Ⅱ)試證明,且);

          (Ⅲ)當(dāng)時,求證:  ().

          查看答案和解析>>

          (本題滿分14分)

           已知函數(shù)圖象上一點處的切線方程為

          (Ⅰ)求的值;

          (Ⅱ)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));

          (Ⅲ)令,若的圖象與軸交于,(其中),的中點為,求證:處的導(dǎo)數(shù)

          查看答案和解析>>

          (本題滿分14分)

          已知曲線方程為,過原點O作曲線的切線

          (1)求的方程;

          (2)求曲線,軸圍成的圖形面積S;

          (3)試比較的大小,并說明理由。

          查看答案和解析>>

          (本題滿分14分)

          已知中心在原點,對稱軸為坐標(biāo)軸的橢圓,左焦點,一個頂點坐標(biāo)為(0,1)

          (1)求橢圓方程;

          (2)直線過橢圓的右焦點交橢圓于A、B兩點,當(dāng)△AOB面積最大時,求直線方程。

          查看答案和解析>>

          (本題滿分14分)

          如圖,在直三棱柱中,,,求二面角的大小。    

          查看答案和解析>>

           

          一、選擇題

          1―10 ACBCB   DBCDD

          二、填空題

          11.    12.    13.―3     14.

          15.2    16.    17.<

          三、解答題:

          18.解:(I)

                

             (II)由于區(qū)間的長度是為,為半個周期。

              又分別取到函數(shù)的最小值

          所以函數(shù)上的值域為!14分

          19.解:(Ⅰ)證明:連接BD,設(shè)AC與BD相交于點F.

          因為四邊形ABCD是菱形,所以AC⊥BD.……………………2分

          又因為PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.………………4分

          而AC∩BD=F,所以AC⊥平面PDB.

          E為PB上任意一點,DE平面PBD,所以AC⊥DE.……………………6分

             (Ⅱ)連EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.

          S△ACE =AC?EF,在△ACE面積最小時,EF最小,則EF⊥PB.

          S△ACE=9,×6×EF=9,解得EF=3. …………………8分

          由PB⊥EF且PB⊥AC得PB⊥平面AEC,則PB⊥EC,

          又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB!10分

          作GH//CE交PB于點G,則GH⊥平面PAB,

          所以∠GEH就是EG與平面PAB所成角。   ………………12分

          在直角三角形CEB中,BC=6,

            1. 20.解:(1)

                 ………………5分

                 ………………6分

                 (2)若

                 

                 

              21.解:(1)

                 

                ………………6分

                 (2)由(1)可知

                  要使對任意   ………………14分

              22.解:(1)依題意知,拋物線到焦點F的距離是

                    …………4分

                 (2)設(shè)圓的圓心為

                 

                  即當(dāng)M運(yùn)動時,弦長|EG|為定值4。 ………………9分

                 (III)因為點C在線段FD上,所以軸不平行,

                  可設(shè)直線l的方程為

                 

                 (1)當(dāng)時,不存在這樣的直線l

                 (2)當(dāng)   ………………16分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>