日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22. 查看更多

           

          題目列表(包括答案和解析)

          (本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分。

               已知函數(shù)的反函數(shù)。定義:若對給定的實數(shù),函數(shù)互為反函數(shù),則稱滿足“和性質(zhì)”;若函數(shù)互為反函數(shù),則稱滿足“積性質(zhì)”。

          (1)       判斷函數(shù)是否滿足“1和性質(zhì)”,并說明理由;    

          (2)       求所有滿足“2和性質(zhì)”的一次函數(shù);

          (3)       設(shè)函數(shù)對任何,滿足“積性質(zhì)”。求的表達式。

          查看答案和解析>>

          (本題滿分16分)

             (文科學生做)已知命題p:函數(shù)在R上存在極值;

          命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對,都有;

          為真,為假,試求實數(shù)a的取值范圍。

           

          (理科學生做)已知命題p:對,函數(shù)有意義;

          命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對,都有;

          為真,為假,試求實數(shù)a的取值范圍。

          查看答案和解析>>

          (本題滿分16分)

             在平面直角坐標系中,已知圓心在第二象限、半徑為的圓與直線相切于坐標原點.橢圓與圓的一個交點到橢圓兩焦點的距離之和為

             (1)求圓的方程;

             (2)試探究圓上是否存在異于原點的點,使到橢圓右焦點的距離等于線段的長.若存在,請求出點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          (本題滿分16分)

             (文科學生做)已知命題p:函數(shù)在R上存在極值;

          命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對,都有

          為真,為假,試求實數(shù)a的取值范圍。

           

          (理科學生做)已知命題p:對,函數(shù)有意義;

          命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對,都有;

          為真,為假,試求實數(shù)a的取值范圍。

          查看答案和解析>>

          (本題滿分16分)在平面直角坐標系中,已知圓心在第二象限、半徑為的圓與直線相切于坐標原點.橢圓與圓的一個交點到橢圓兩焦點的距離之和為

             (1)求圓的方程;

             (2)試探究圓上是否存在異于原點的點,使到橢圓右焦點的距離等于線段的長.若存在,請求出點的坐標;若不存在,請說明理由

          查看答案和解析>>

           

          一、選擇題

          1―10 ACBCB   DBCDD

          二、填空題

          11.    12.    13.―3     14.

          15.2    16.    17.<

          三、解答題:

          18.解:(I)

                

             (II)由于區(qū)間的長度是為,為半個周期。

              又分別取到函數(shù)的最小值

          所以函數(shù)上的值域為!14分

          19.解:(Ⅰ)證明:連接BD,設(shè)AC與BD相交于點F.

          因為四邊形ABCD是菱形,所以AC⊥BD.……………………2分

          又因為PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.………………4分

          而AC∩BD=F,所以AC⊥平面PDB.

          E為PB上任意一點,DE平面PBD,所以AC⊥DE.……………………6分

             (Ⅱ)連EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.

          S△ACE =AC?EF,在△ACE面積最小時,EF最小,則EF⊥PB.

          S△ACE=9,×6×EF=9,解得EF=3. …………………8分

          由PB⊥EF且PB⊥AC得PB⊥平面AEC,則PB⊥EC,

          又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB!10分

          作GH//CE交PB于點G,則GH⊥平面PAB,

          所以∠GEH就是EG與平面PAB所成角。   ………………12分

          在直角三角形CEB中,BC=6,

            1. 20.解:(1)

                 ………………5分

                 ………………6分

                 (2)若

                 

                 

              21.解:(1)

                 

                ………………6分

                 (2)由(1)可知

                  要使對任意   ………………14分

              22.解:(1)依題意知,拋物線到焦點F的距離是

                    …………4分

                 (2)設(shè)圓的圓心為

                 

                  即當M運動時,弦長|EG|為定值4。 ………………9分

                 (III)因為點C在線段FD上,所以軸不平行,

                  可設(shè)直線l的方程為

                 

                 (1)當時,不存在這樣的直線l

                 (2)當   ………………16分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>