日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ⑴若 , =m , mn, 則n或n, 查看更多

           

          題目列表(包括答案和解析)

          設(shè)為兩個不同的平面,m、n為兩條不同的直線,且m,n,有如下的兩個命題:p:若//,則m//n;q:若mn,則.那么

           A. “p或q”是假命題                              B. “p且q”是真命題

          C. “非p或q” 是假命題                          D. “非p且q”是真命題

           

          查看答案和解析>>

          設(shè)為兩個不同的平面,m、n為兩條不同的直線,且m,n,有如下的兩個命題:p:若//,則m//n;q:若mn,則.那么

          A.“p或q”是假命題B.“p且q”是真命題
          C.“非p或q”是假命題D.“非p且q”是真命題

          查看答案和解析>>

          已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
          (1)求動點P所在曲線C的方程;
          (2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應(yīng)的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
          (3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
          進一步思考問題:若上述問題中直線、點F(-c,0)、曲線C:,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷______ (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

          查看答案和解析>>

          已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
          d2
          d1
          =
          2
          2

          (1)求動點P所在曲線C的方程;
          (2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應(yīng)的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
          (3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
          進一步思考問題:若上述問題中直線l1:x=-
          a2
          c
          、點F(-c,0)、曲線C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0,c=
          a2-b2
          )
          ,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷
           
           (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

          查看答案和解析>>

          有下列敘述
          ①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
          ②兩向量平行,那么兩向量的方向一定相同或者相反
          ③若不等式對任意正整數(shù)n恒成立,則實數(shù)a的取值范圍是
          ④對于任意兩個正整數(shù)m,n,定義某種運算⊕如下:
          當(dāng)m,n奇偶性相同時,m⊕n=m+n;當(dāng)m,n奇偶性不同時,m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個數(shù)是15個.
          上述說法正確的是   

          查看答案和解析>>


          同步練習(xí)冊答案