日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 9.若∆ABC內(nèi)切圓半徑為r.三邊長(zhǎng)為a.b.c.則∆ABC的面積S=r 類比到空間.若四面體內(nèi)切球半徑為R.四個(gè)面的面積為S1.S2 .S3 .S4.則四面體的體積V= . 查看更多

           

          題目列表(包括答案和解析)

          在△ABC中,若它的內(nèi)切圓半徑為r,周長(zhǎng)為C,則它的面積S△ABC=
          rC
          2
          .請(qǐng)寫出在正四面體中類似的命題:
          若四面體四個(gè)面的面積分別為S1,S2,S3,S4,內(nèi)切球的半徑為R,則此四面體的體積為:V=
          1
          3
          (S1+S2+S3+S4)R
          若四面體四個(gè)面的面積分別為S1,S2,S3,S4,內(nèi)切球的半徑為R,則此四面體的體積為:V=
          1
          3
          (S1+S2+S3+S4)R

          查看答案和解析>>

          (1)若三角形的內(nèi)切圓半徑為r,三邊的長(zhǎng)分別為a,b,c,則三角形的面積S=
          12
          r(a+b+c),根據(jù)類比思想,若四面體的內(nèi)切球半徑為R,四個(gè)面的面積分別為S1,S2,S3,S4,則此四面體的體積V=
           

          (2)在平面幾何里有勾股定理:“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積之間的關(guān)系,可以得出的正確結(jié)論是:“設(shè)三棱錐A-BCD的三側(cè)面ABC,ACD,ADB兩兩垂直,則
           
          .”

          查看答案和解析>>

          (1)若三角形的內(nèi)切圓半徑為r,三邊的長(zhǎng)分別為a,b,c,則三角形的面積S=r(a+b+c),根據(jù)類比思想,若四面體的內(nèi)切球半徑為R,四個(gè)面的面積分別為S1,S2,S3,S4,則此四面體的體積V=______.
          (2)在平面幾何里有勾股定理:“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積之間的關(guān)系,可以得出的正確結(jié)論是:“設(shè)三棱錐A-BCD的三側(cè)面ABC,ACD,ADB兩兩垂直,則 ______.”

          查看答案和解析>>

          (1)若三角形的內(nèi)切圓半徑為r,三邊的長(zhǎng)分別為a,b,c,則三角形的面積S=數(shù)學(xué)公式r(a+b+c),根據(jù)類比思想,若四面體的內(nèi)切球半徑為R,四個(gè)面的面積分別為S1,S2,S3,S4,則此四面體的體積V=________.
          (2)在平面幾何里有勾股定理:“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積之間的關(guān)系,可以得出的正確結(jié)論是:“設(shè)三棱錐A-BCD的三側(cè)面ABC,ACD,ADB兩兩垂直,則 ________.”

          查看答案和解析>>

          若三角形的內(nèi)切圓半徑為r,三邊的長(zhǎng)分別為a,b,c,則三角形的面積S=
          12
          r(a+b+c),根據(jù)類比思想,若四面體的內(nèi)切球半徑為R,四個(gè)面的面積分別為S1、S2、S3、S4,則此四面體的體積V=
           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案