日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22.解:(1)依題意有.則.將點(diǎn)代入得.而...故, 查看更多

           

          題目列表(包括答案和解析)

          如圖,,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

          (1)寫出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

          (2)求證:);

          (3)設(shè),對所有,恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問利用有得到

          第二問證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,

          第三問 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

          解:(1)依題意,有,,………………4分

          (2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分

          ②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分

          則當(dāng)時(shí),由歸納假設(shè)及,

          解得不合題意,舍去)

          即當(dāng)時(shí),命題成立.  …………………………………………4分

          綜上所述,對所有.    ……………………………1分

          (3) 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>

          閱讀下面材料:
          根據(jù)兩角和與差的正弦公式,有
          sin(α+β)=sinαcosβ+cosαsinβ------①
          sin(α-β)=sinαcosβ-cosαsinβ------②
          由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
          α+β=A,α-β=B 有α=
          A+B
          2
          ,β=
          A-B
          2

          代入③得 sinA+cosB=2sin
          A+B
          2
          cos
          A-B
          2

          (1)類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
          A+B
          2
          sin
          A-B
          2
          ;
          (2)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A+cox2C-cos2B=1,直接利用閱讀材料及(1)中的結(jié)論試判斷△ABC的形狀.

          查看答案和解析>>

          閱讀下面材料:
          根據(jù)兩角和與差的正弦公式,有:
          sin(α+β)=sinαcosβ+cosαsinβ…①
          sin(α-β)=sinαcosβ-cosαsinβ…②
          由①+②得sin(α+β)+sin(α-β)=2sinαcosβ…③
          令α+β=A,α-β=B有α=
          A+B
          2
          ,β=
          A-B
          2

          代入③得sinA+sinB=2sin
          A+B
          2
          cos
          A-B
          2

          (Ⅰ)類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
          A+B
          2
          sin
          A-B
          2
          ;
          (Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A-cos2B=1-cos2C,試判斷△ABC的形狀.(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

          查看答案和解析>>

          閱讀下面材料:
          根據(jù)兩角和與差的正弦公式,有
          sin(α+β)=sinαcosβ+cosαsinβ------①
          sin(α-β)=sinαcosβ-cosαsinβ------②
          由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
          α+β=A,α-β=B 有α=
          A+B
          2
          ,β=
          A-B
          2

          代入③得 sinA+cosB=2sin
          A+B
          2
          cos
          A-B
          2

          (1)類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
          A+B
          2
          sin
          A-B
          2
          ;
          (2)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A+cox2C-cos2B=1,直接利用閱讀材料及(1)中的結(jié)論試判斷△ABC的形狀.

          查看答案和解析>>

          閱讀下面材料:根據(jù)兩角和與差的正弦公式,有
          sin(α+β)=sinαcosβ+cosαsinβ------①
          sin(α-β)=sinαcosβ-cosαsinβ------②
          由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
          令α+β=A,α-β=β 有α=
          A+B
          2
          ,β=
          A-B
          2

          代入③得 sinA+subB=2sin
          A+B
          2
          cos
          A-B
          2

          (Ⅰ) 類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
          A+B
          2
          sin
          A-B
          2

          (Ⅱ)求值:sin220°+cos250°+sin20°cos50°(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

          查看答案和解析>>


          同步練習(xí)冊答案