日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 18. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          已知函數(shù)

          (1)證明:

          (2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

          (3)設數(shù)列滿足:,設,

          若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

          試求的最大值。

          查看答案和解析>>

          (本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

          (Ⅰ)當點軸上移動時,求動點的軌跡方程;

          (Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線,當,求直線的方程.

          查看答案和解析>>

          (本小題滿分14分)設函數(shù)

           (1)求函數(shù)的單調(diào)區(qū)間;

           (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

           (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

          查看答案和解析>>

          (本小題滿分14分)

          已知,其中是自然常數(shù),

          (1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

          (2)求證:在(1)的條件下,

          (3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          (本小題滿分14分)

          設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

          (I)求數(shù)列的通項公式;

          (II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;

          (III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

          查看答案和解析>>

          數(shù)   學(理科)    2009.4

          一、選擇題:本大題共有10小題,每小題5分,共50分.

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          C

          D

          A

          B

          B

          A

          C

          C

          B

          B

          二、填空題:本大題共有7小題,每小題4分,共28分.

          11. 1   12. 110   13. 78   14.  15.  16. 7   17.

          三.解答題:本大題共5小題,共72分.解答應寫出文字說明、證明過程或演算步驟.

          18.(Ⅰ)解:.……………………… 4分

          ,解得

          所以函數(shù)的單調(diào)遞增區(qū)間為 .…………… 7分

          (Ⅱ)解:由,得.故.……………… 10分

          于是有 ,或,

          .因,故.……………… 14分

          19.(Ⅰ)解:恰好摸到兩個“心”字球的取法共有4種情形:

          開心心,心開心,心心開,心心樂.

          則恰好摸到2個“心”字球的概率是

          .………………………………………6分

          (Ⅱ)解:

          ,,

          .…………………………………………10分

          故取球次數(shù)的分布列為

          1

          2

          3

          .…………………………………………………14分

          20.(Ⅰ)解:因在底面上的射影恰為B點,則⊥底面

          所以就是與底面所成的角.

          ,故 ,

          與底面所成的角是.……………………………………………3分

          如圖,以A為原點建立空間直角坐標系,則

          ,

          ,

          ,

          與棱BC所成的角是.…………………………………………………7分

          (Ⅱ)解:設,則.于是

          舍去),

          則P為棱的中點,其坐標為.…………………………………………9分

          設平面的法向量為,則

          ,故.…………………11分

          而平面的法向量是,

          ,

          故二面角的平面角的余弦值是.………………………………14分

          21.(Ⅰ)解:由題意知:,,解得

          故橢圓的方程為.…………………………………………………5分

             (Ⅱ)解:設,

          ⑴若軸,可設,因,則

          ,得,即

          軸,可設,同理可得.……………………7分

          ⑵當直線的斜率存在且不為0時,設,

          ,消去得:

          .………………………………………9分

          ,知

          ,即(記為①).…………11分

          ,可知直線的方程為

          聯(lián)立方程組,得 (記為②).……………………13分

          將②代入①,化簡得

          綜合⑴、⑵,可知點的軌跡方程為.………………………15分

          22.(Ⅰ)證明:當時,.令,則

          ,遞增;若,遞減,

          的極(最)大值點.于是

          ,即.故當時,有.………5分

          (Ⅱ)解:對求導,得

          ①若,則上單調(diào)遞減,故合題意.

          ②若

          則必須,故當時,上單調(diào)遞增.

          ③若,的對稱軸,則必須,

          故當時,上單調(diào)遞減.

          綜合上述,的取值范圍是.………………………………10分

          (Ⅲ)解:令.則問題等價于

                  找一個使成立,故只需滿足函數(shù)的最小值即可.

                  因,

          ,

          故當時,,遞減;當時,,遞增.

          于是,

          與上述要求相矛盾,故不存在符合條件的.……………………15分


          同步練習冊答案