日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解析]依題意得. 查看更多

           

          題目列表(包括答案和解析)

          如圖,已知點(diǎn)和單位圓上半部分上的動(dòng)點(diǎn)B.

          (1)若,求向量;

          (2)求的最大值.

          【解析】對(duì)于這樣的向量的坐標(biāo)和模最值的求解,利用建立直角坐標(biāo)系的方法可知。

          第一問(wèn)中,依題意,,,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911085823385992/SYS201207091109409213861961_ST.files/image002.png">,所以,即,

          解得,所以

          第二問(wèn)中,結(jié)合三角函數(shù)的性質(zhì)得到最值。

          (1)依題意,,(不含1個(gè)或2個(gè)端點(diǎn)也對(duì))

          , (寫(xiě)出1個(gè)即可)

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911085823385992/SYS201207091109409213861961_ST.files/image002.png">,所以,即,

          解得,所以.-

          (2)

           當(dāng)時(shí),取得最大值,

           

          查看答案和解析>>

          已知數(shù)列的前項(xiàng)的和為,是等比數(shù)列,且。

          ⑴求數(shù)列的通項(xiàng)公式;

          ⑵設(shè),求數(shù)列的前項(xiàng)的和

          ⑴   ,數(shù)列的前項(xiàng)的和為,求證:

          【解析】第一問(wèn)利用數(shù)列

          依題意有:當(dāng)n=1時(shí),;

          當(dāng)時(shí),

          第二問(wèn)中,利用由得:,然后借助于錯(cuò)位相減法

          第三問(wèn)中

          結(jié)合均值不等式放縮得到證明。

           

          查看答案和解析>>

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設(shè)切點(diǎn)為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過(guò)點(diǎn)A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>

          如圖,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

          (1)寫(xiě)出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

          (2)求證:);

          (3)設(shè),對(duì)所有恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問(wèn)利用有,得到

          第二問(wèn)證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,

          第三問(wèn) 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

          解:(1)依題意,有,………………4分

          (2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分

          ②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分

          則當(dāng)時(shí),由歸納假設(shè)及,

          解得不合題意,舍去)

          即當(dāng)時(shí),命題成立.  …………………………………………4分

          綜上所述,對(duì)所有,.    ……………………………1分

          (3) 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>

          一自來(lái)水廠用蓄水池通過(guò)管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計(jì)劃在當(dāng)日每小時(shí)向蓄水池注入水2千噸,且每小時(shí)通過(guò)管道向所管轄區(qū)域供水千噸.

          (1)多少小時(shí)后,蓄水池存水量最少?

          (2)當(dāng)蓄水池存水量少于3千噸時(shí),供水就會(huì)出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時(shí)間有多長(zhǎng)?

          【解析】第一問(wèn)中(1)設(shè)小時(shí)后,蓄水池有水千噸.依題意,當(dāng),即(小時(shí))時(shí),蓄水池的水量最少,只有1千噸

          第二問(wèn)依題意,   解得:

          解:(1)設(shè)小時(shí)后,蓄水池有水千噸.………………………………………1分

          依題意,…………………………………………4分

          當(dāng),即(小時(shí))時(shí),蓄水池的水量最少,只有1千噸. ………2分

          (2)依題意,   ………………………………………………3分

          解得:.  …………………………………………………………………3分

          所以,當(dāng)天有8小時(shí)會(huì)出現(xiàn)供水緊張的情況

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案