日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 令得或-8分 由(1)知 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)

          (1)若函數(shù)的圖象經(jīng)過P(3,4)點(diǎn),求a的值;

          (2)比較大小,并寫出比較過程;

          (3)若,求a的值.

          【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問中,因?yàn)楹瘮?shù)的圖象經(jīng)過P(3,4)點(diǎn),所以,解得,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image007.png">,所以.

          (2)問中,對(duì)底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。

          (3)中,由知,.,指對(duì)數(shù)互化得到,,所以,解得所以, 或 .

          解:⑴∵函數(shù)的圖象經(jīng)過,即.        … 2分

          ,所以.             ………… 4分

          ⑵當(dāng)時(shí),;

          當(dāng)時(shí),. ……………… 6分

          因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image021.png">,

          當(dāng)時(shí),上為增函數(shù),∵,∴.

          .當(dāng)時(shí),上為減函數(shù),

          ,∴.即.      …………………… 8分

          ⑶由知,.所以,(或).

          .∴,       … 10分

           或 ,所以, 或 .

           

          查看答案和解析>>

          設(shè)函數(shù)f(x)=lnxgx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來源:學(xué)。科。網(wǎng)]

          (Ⅰ)求a、b的值; 

          (Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]

          【解析】第一問解:因?yàn)?i>f(x)=lnxgx)=ax+

          則其導(dǎo)數(shù)為

          由題意得,

          第二問,由(I)可知,令。

          ,  …………8分

          是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

          ∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

          解:因?yàn)?i>f(x)=lnxgx)=ax+

          則其導(dǎo)數(shù)為

          由題意得,

          (11)由(I)可知,令。

          ,  …………8分

          是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

          ∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

           

          查看答案和解析>>

          已知向量),向量,

          .

          (Ⅰ)求向量; (Ⅱ)若,求.

          【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

          (1)問中∵,∴,…………………1分

          ,得到三角關(guān)系是,結(jié)合,解得。

          (2)由,解得,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

          解析一:(Ⅰ)∵,∴,…………1分

          ,∴,即   ①  …………2分

           ②   由①②聯(lián)立方程解得,,5分

               ……………6分

          (Ⅱ)∵,  …………7分

          ,               ………8分

          又∵,          ………9分

          ,            ……10分

          解法二: (Ⅰ),…………………………………1分

          ,∴,即,①……2分

              ②

          將①代入②中,可得   ③    …………………4分

          將③代入①中,得……………………………………5分

             …………………………………6分

          (Ⅱ) 方法一 ∵,,∴,且……7分

          ,從而.      …………………8分

          由(Ⅰ)知;     ………………9分

          .     ………………………………10分

          又∵,∴, 又,∴    ……11分

          綜上可得  ………………………………12分

          方法二∵,,∴,且…………7分

          .                                 ……………8分

          由(Ⅰ)知, .                …………9分

                       ……………10分

          ,且注意到

          ,又,∴   ………………………11分

          綜上可得                    …………………12分

          (若用,又∵ ∴ ,

           

          查看答案和解析>>

          已知向量,且,A為銳角,求:

          (1)角A的大;

          (2)求函數(shù)的單調(diào)遞增區(qū)間和值域.

          【解析】第一問中利用,解得   又A為銳角                 

                

          第二問中,

           解得單調(diào)遞增區(qū)間為

          解:(1)        ……………………3分

             又A為銳角                 

                                        ……………………5分

          (2)

                                                            ……………………8分

            由 解得單調(diào)遞增區(qū)間為

                                                            ……………………10分

           

           

          查看答案和解析>>

          某制造商制造并出售球形瓶裝的某種飲料,瓶子的制造成本與瓶子的半徑r的平方成正比,且r=1cm時(shí),制造成本為0.8π分.已知每出售1ml的飲料,制造商可獲利0.2分,且制造商制作的瓶子的最大半徑為6cm,設(shè)每瓶飲料的利潤為y分,(半徑r的單位是cm).
          (1)寫出出售每瓶飲料可得利潤的關(guān)系式;
          (2)求制造商制造并出售100瓶該飲料所獲得的最大利潤(結(jié)果用含π的式子表示).

          查看答案和解析>>


          同步練習(xí)冊(cè)答案