日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. x1+x2=a.從而|x1-x2|==.∵-1≤a≤1.∴|x1-x2|=≤3∴ 要使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1.1]恒成立.當(dāng)且僅當(dāng)m2+tm+1≥3對任意t∈[-1.1]恒成立.即m2+tm-2≥0對任意t∈[-1.1] 恒成立.x1x2=-2.. ②設(shè)g(t)=m2+tm-2=mt+(m2-2).方法一: 查看更多

           

          題目列表(包括答案和解析)

          (2012•漳州模擬)在平面直角坐標(biāo)系中,圓x2+y2=R2(R>0)上兩點A(x1,y1),B(x2,y2),若劣弧AB的長為L,則
          L
          R
          等于
          OA 
          , 
          OB
          夾角的弧度數(shù),從而cos
          L
          R
          =
          x1x2+y1y2
          R2
          .在空間直角坐標(biāo)系中,以原點為球心,半徑為R的球面上兩點A(x1,y1,z1),B(x2,y2,z2),若A、B兩點間的球面距離為L,則cos
          L
          R
          等于
          x1x2+y1y2+z1z2
          R2
          x1x2+y1y2+z1z2
          R2

          查看答案和解析>>

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

          于是對一切恒成立,當(dāng)且僅當(dāng).        ①

          當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

          故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng)

          從而,

          所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

           

          查看答案和解析>>

          在平面直角坐標(biāo)系中,圓x2+y2=R2(R>0)上兩點A(x1,y1),B(x2,y2),若劣弧AB的長為L,則夾角的弧度數(shù),從而.在空間直角坐標(biāo)系中,以原點為球心,半徑為R的球面上兩點A(x1,y1,z1),B(x2,y2,z2),若A、B兩點間的球面距離為L,則等于   

          查看答案和解析>>

          在平面直角坐標(biāo)系中,圓x2+y2=R2(R>0)上兩點A(x1,y1),B(x2,y2),若劣弧AB的長為L,則
          L
          R
          等于
          OA 
          , 
          OB
          夾角的弧度數(shù),從而cos
          L
          R
          =
          x1x2+y1y2
          R2
          .在空間直角坐標(biāo)系中,以原點為球心,半徑為R的球面上兩點A(x1,y1,z1),B(x2,y2,z2),若A、B兩點間的球面距離為L,則cos
          L
          R
          等于______.

          查看答案和解析>>

          在平面直角坐標(biāo)系中,圓x2+y2=R2(R>0)上兩點A(x1,y1),B(x2,y2),若劣弧AB的長為L,則數(shù)學(xué)公式夾角的弧度數(shù),從而數(shù)學(xué)公式.在空間直角坐標(biāo)系中,以原點為球心,半徑為R的球面上兩點A(x1,y1,z1),B(x2,y2,z2),若A、B兩點間的球面距離為L,則數(shù)學(xué)公式等于________.

          查看答案和解析>>


          同步練習(xí)冊答案