日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16.解:依題設(shè)有: ---------------4分 查看更多

           

          題目列表(包括答案和解析)

          本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
          (1)選修4-2:矩陣與變換
          變換T1是逆時(shí)針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是
          (I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
          (II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
          (2)選修4-4:極坐標(biāo)系與參數(shù)方程
          從極點(diǎn)O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
          (Ⅰ)求動(dòng)點(diǎn)P的極坐標(biāo)方程;
          (Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
          (3)選修4-5:不等式選講
          已知f(x)=|6x+a|.
          (Ⅰ)若不等式f(x)≥4的解集為,求實(shí)數(shù)a的值;
          (Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          若二次函數(shù)y=f(x)的圖象經(jīng)過原點(diǎn),且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范圍.

          分析:要求f(-2)的取值范圍,只需找到含人f(-2)的不等式(組).由于y=f(x)是二次函數(shù),所以應(yīng)先將f(x)的表達(dá)形式寫出來.即可求得f(-2)的表達(dá)式,然后依題設(shè)條件列出含有f(-2)的不等式(組),即可求解.

          查看答案和解析>>

          已知,函數(shù)

          (1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

          【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

          對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當(dāng)時(shí),  又    

          ∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當(dāng)時(shí)

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時(shí),極大值為,無極小值

          時(shí)  極大值是,極小值是        ----------8分

          (Ⅲ)設(shè)

          求導(dǎo),得

              

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實(shí)數(shù)的取值范圍是(,

           

          查看答案和解析>>

          現(xiàn)有4個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

          (Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;

          (Ⅱ)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

          (Ⅲ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

          【解析】依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.

          設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件

          .

          (1)這4個(gè)人中恰有2人去參加甲游戲的概率

          (2)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故

          所以,這個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.

          (3)的所有可能取值為0,2,4.由于互斥,互斥,故

              

          所以的分布列是

          0

          2

          4

          P

          隨機(jī)變量的數(shù)學(xué)期望.

           

          查看答案和解析>>

          一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計(jì)劃在當(dāng)日每小時(shí)向蓄水池注入水2千噸,且每小時(shí)通過管道向所管轄區(qū)域供水千噸.

          (1)多少小時(shí)后,蓄水池存水量最少?

          (2)當(dāng)蓄水池存水量少于3千噸時(shí),供水就會(huì)出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時(shí)間有多長?

          【解析】第一問中(1)設(shè)小時(shí)后,蓄水池有水千噸.依題意,當(dāng),即(小時(shí))時(shí),蓄水池的水量最少,只有1千噸

          第二問依題意,   解得:

          解:(1)設(shè)小時(shí)后,蓄水池有水千噸.………………………………………1分

          依題意,…………………………………………4分

          當(dāng),即(小時(shí))時(shí),蓄水池的水量最少,只有1千噸. ………2分

          (2)依題意,   ………………………………………………3分

          解得:.  …………………………………………………………………3分

          所以,當(dāng)天有8小時(shí)會(huì)出現(xiàn)供水緊張的情況

           

          查看答案和解析>>


          同步練習(xí)冊答案