日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ①, ②是奇函數(shù), ③在定義域上單調(diào)遞增, ④的圖象關(guān)于點 對稱. 查看更多

           

          題目列表(包括答案和解析)

          定義域在上的函數(shù)滿足:①是奇函數(shù);②當(dāng)時,函數(shù)單調(diào)遞增;又,則的值(    )

          A.恒小于0       B.恒大于0    

          C.恒大于等于0       D.恒小于等于0

           

          查看答案和解析>>

          定義域在上的函數(shù)滿足:①是奇函數(shù);②當(dāng)時,函數(shù)單調(diào)遞增;又,則的值(   )
          A.恒小于0B.恒大于0
          C.恒大于等于0D.恒小于等于0

          查看答案和解析>>

          函數(shù)f(x)=
          x2-x4
          |x-2|-2
          .給出函數(shù)f(x)下列性質(zhì):
          (1)f(x)的定義域和值域均為[-1,1];
          (2)f(x)是奇函數(shù)
          (3)函數(shù)在定義域上單調(diào)遞增;
          (4)函數(shù)f(x)有兩零點;
          (5)A、B為函數(shù)f(x)圖象上任意不同兩點,則
          2
          <|AB|≤2

          請寫出所有關(guān)于函數(shù)f(x)性質(zhì)正確描述的序號.則函數(shù)f(x)有關(guān)性質(zhì)中正確描述的個數(shù)是( 。

          查看答案和解析>>

          函數(shù)的定義域為,其圖象上任一點滿足,則給出以下四個命題:

          函數(shù)一定是偶函數(shù); 函數(shù)可能是奇函數(shù);

          函數(shù)單調(diào)遞增;是偶函數(shù),其值域為

          其中正確的序號為_______________.(把所有正確的序號都填上)

           

          查看答案和解析>>

          函數(shù)的定義域為,其圖象上任一點滿足,則給出以下四個命題:

          函數(shù)一定是偶函數(shù); 函數(shù)可能是奇函數(shù);

          函數(shù)單調(diào)遞增;是偶函數(shù),其值域為

          其中正確的序號為_______________.(把所有正確的序號都填上)

           

          查看答案和解析>>

          一、選擇題(本大題共8小題,每小題5,40

          ACDDB CDC

           

          二、填空題(本大題共6小題,每小題5分.有兩空的小題,第一空3分,第二空2分,共30分)

          (9)62        (10)2        (11)         (12)2,

          (13)    (14),③④

          三、解答題(本大題共6小題,共80分)

          (15)(本小題共13分)

          解:(Ⅰ)∵),

          ).                ………………………………………1分

          ,成等差數(shù)列,

          .                                  ………………………………………3分

          .                                     ………………………………………5分

          .                                             ………………………………………6分

          (Ⅱ)由(Ⅰ)得

          ).

          ∴數(shù)列為首項是,公差為1的等差數(shù)列.         ………………………………………8分

          .

          .                                         ………………………………………10分

          當(dāng)時,.      ………………………………………12分

          當(dāng)時,上式也成立.                             ………………………………………13分

          ).

           

          (16)(本小題共13分)

          解:(Ⅰ)該間教室兩次檢測中,空氣質(zhì)量均為A級的概率為.………………………………2分

          該間教室兩次檢測中,空氣質(zhì)量一次為A級,另一次為B級的概率為.

                                                                    …………………………………4分

          設(shè)“該間教室的空氣質(zhì)量合格”為事件E.則                    …………………………………5分

          .                              …………………………………6分

          答:估計該間教室的空氣質(zhì)量合格的概率為.

          (Ⅱ)由題意可知,的取值為0,1,2,3,4.                …………………………………7分

          .

          隨機(jī)變量的分布列為:

          0

          1

          2

          3

          4

                                                                  …………………………………12分

          解法一:

          .    …………………………………13分

          解法二:,

          .                                       …………………………………13分

           

          (17)(本小題共14分)

          (Ⅰ)證明:設(shè)的中點為.

          在斜三棱柱中,點在底面上的射影恰好是的中點,

               平面ABC.         ……………………1分

          平面,

          .               ……………………2分

          ,

          .

          平面.       ……………………4分

          平面,

              平面平面.                          ………………………………………5分

          解法一:(Ⅱ)連接平面,

          是直線在平面上的射影.          ………………………………………5分

          四邊形是菱形.

          .                                   ………………………………………7分

          .                                   ………………………………………9分

          (Ⅲ)過點于點,連接.

          平面.

          .

          是二面角的平面角.               ………………………………………11分

          設(shè),則

          .

          .

          .

          .

          平面,平面

          .

          .

          中,可求.

          ,∴.

          .

          .                   ………………………………………13分

          .

          ∴二面角的大小為.             ………………………………………14分

          解法二:(Ⅱ)因為點在底面上的射影是的中點,設(shè)的中點為,則平面ABC.以為原點,過平行于的直線為軸,所在直線為軸,所在直線為軸,建立如圖所示的空間直角坐標(biāo)系.

          設(shè),由題意可知,.

          設(shè),由,得

          ………………………………………7分

          .

            又.

          .

          .                                              ………………………………………9分

          (Ⅲ)設(shè)平面的法向量為.

          .

          設(shè)平面的法向量為.則

          .                                   ………………………………………12分

          .                        ………………………………………13分

          二面角的大小為.           ………………………………………14分

          (18)(本小題共13分)

          解:(Ⅰ)函數(shù)的定義域為.                 ………………………………………1分

          .             ………………………………………3分

          ,解得.

          ,解得

          的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

          ………………………………………6分

          (Ⅱ)由題意可知,,且上的最小值小于等于時,存在實數(shù),使得不等式成立.                             ………………………………………7分

          時,

          x

          a+1

          -

          0

          +

          極小值

          上的最小值為

          ,得.                           ………………………………………10分

          時,上單調(diào)遞減,則上的最小值為

          (舍).                            ………………………………………12分

          綜上所述,.                               ………………………………………13分

          (19)(本小題共13分)

          解:(Ⅰ)由拋物線C:得拋物線的焦點坐標(biāo)為,設(shè)直線的方程為:,.                                       ………………………………………1分

          .

          所以,.因為, …………………………………3分

          所以.

          所以.即.

          所以直線的方程為:.           ………………………………………5分

          (Ⅱ)設(shè),,則.

          .

          因為,所以,. ……………………………………7分

             (?)設(shè),則.

            由題意知:.

          .

            顯然      ………………………………………9分

          (?)由題意知:為等腰直角三角形,,即,即.

          . .

          .,.                      ………………………………………11分

            .

          的取值范圍是.                           ………………………………………13分

           

          (20)(本小題共14分)

          解:(Ⅰ)取,得,即.

          因為,所以.                         ………………………………………1分

          ,得.因為,所以.

          ,得,所以.

                                                              ………………………………………3分

          (Ⅱ)在中取.

          所以.

          中取,得.

          中取

          .

          所以.

          中取,

          .

          所以.

          中取,

                   .

          所以對任意實數(shù)均成立.

          所以.                        ………………………………………9分

          (Ⅲ)由(Ⅱ)知,

          中,

          ,得,即  ①

          ,得

          ,得,即

          ②+①得,②+③得.

          .

          代入①得.

          代入②得.

          .

          由(Ⅱ)知,所以對一切實數(shù)成立.

          故當(dāng)時,對一切實數(shù)成立.

          存在常數(shù),使得不等式對一切實數(shù)成立,且為滿足題設(shè)的唯一一組值.                   ………………………………………14分

           

          說明:其它正確解法按相應(yīng)步驟給分.

           

           


          同步練習(xí)冊答案