日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 以水平速度v0=1.8m/s從左端滑到A木板的上表面.并最終停留在長木板B上.已知B.C最終的共同速度為v=0.4m/s.求:⑴A木板的最終速度v1 .⑵鐵塊C剛離開長木板A時刻的瞬時速度v2. 查看更多

           

          題目列表(包括答案和解析)

          如圖所示,質量均為2m的完全相同的長木板A、B并排放置在光滑水平面上靜止.一個質量為m的鐵塊C以水平速度v0=1.8m/s從左端滑到A木板的上表面,并最終停留在長木板B上.已知B、C最終的共同速度為v=0.4m/s.求:
          (1)A木板的最終速度v1
          (2)鐵塊C剛離開長木板A時刻的瞬時速度v2

          查看答案和解析>>

          (09年東臺市期末)(8分)如圖所示,質量均為2m的完全相同的長木板A、B并排放置在光滑水平面上靜止.一個質量為m的鐵塊C以水平速度v0=1.8/s從左端滑到A木板的上表面,并最終停留在長木板B上.已知B、C最終的共同速度為v=0.4m/s.求:

             

          ⑴A木板的最終速度v1;

          ⑵鐵塊C剛離開長木板A時刻的瞬時速度v2。

          查看答案和解析>>

          如圖所示,質量均為2m的完全相同的長木板A、B并排放置在光滑水平面上靜止.一個質量為m的鐵塊C以水平速度v=1.8m/s從左端滑到A木板的上表面,并最終停留在長木板B上.已知B、C最終的共同速度為v=0.4m/s.求:
          (1)A木板的最終速度v1
          (2)鐵塊C剛離開長木板A時刻的瞬時速度v2

          查看答案和解析>>

          (16分)如圖所示,質量m1=0.3 kg 的小車靜止在光滑的水平面上,車長L=15 m,現有質量m2=0.2 kg可視為質點的物塊,以水平向右的速度v0=2 m/s從左端滑上小車,最后在車面上某處與小車保持相對靜止。物塊與車面間的動摩擦因數=0.5,取g=10 m/s2

          (1)物塊在車面上滑行的時間t;

          (2)要使物塊不從小車右端滑出,物塊滑上小車左端的速度v′0不超過多少。

          查看答案和解析>>

           如圖所示,質量m1=0.3 kg 的小車靜止在光滑的水平面上,車長L=15 m,現有質量m2=0.2 kg可視為質點的物塊,以水平向右的速度v0=2 m/s從左端滑上小車,最后在車面上某處與小車保持相對靜止。物塊與車面間的動摩擦因數=0.5,取g=10 m/s2

          (1)物塊在車面上滑行的時間t;

          (2)要使物塊不從小車右端滑出,物塊滑上小車左端的速度v'0不超過多少。

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          查看答案和解析>>

                                             高考真題

          1.【解析】設物體的質量為m,t0時刻受盒子碰撞獲得速度v,根據動量守恒定律                

          3t0時刻物體與盒子右壁碰撞使盒子速度又變?yōu)関0,說明碰撞是彈性碰撞            聯立以上兩式解得  m=M                      

          (也可通過圖象分析得出v0=v,結合動量守恒,得出正確結果)

          【答案】m=M

          2.【解析】由動量守恒定律和能量守恒定律得:      

                    解得:

                炮彈射出后做平拋,有:

                解得目標A距炮口的水平距離為:

               同理,目標B距炮口的水平距離為:

                               

                        解得:

          【答案】

          3.【解析】(1)P1滑到最低點速度為,由機械能守恒定律有:  

              解得:

          P1、P2碰撞,滿足動量守恒,機械能守恒定律,設碰后速度分別為、

                

          解得:    =5m/s

          P2向右滑動時,假設P1保持不動,對P2有:(向左)

          對P1、M有: 

          此時對P1有:,所以假設成立。

          (2)P2滑到C點速度為,由   得

          P1、P2碰撞到P2滑到C點時,設P1、M速度為v,對動量守恒定律:

               解得:

          對P1、P2、M為系統:

          代入數值得:

          滑板碰后,P1向右滑行距離:

          P2向左滑行距離:

          所以P1、P2靜止后距離:

          【答案】(1)(2)

           

          4.【解析】(1)P1經t1時間與P2碰撞,則     

          P1、P2碰撞,設碰后P2速度為v2,由動量守恒:

          解得(水平向左)    (水平向右)

          碰撞后小球P1向左運動的最大距離:      又:

          解得:

          所需時間:

          (2)設P1、P2碰撞后又經時間在OB區(qū)間內再次發(fā)生碰撞,且P1受電場力不變,由運動學公式,以水平向右為正:   則: 

          解得:  (故P1受電場力不變)

          對P2分析:  

          所以假設成立,兩球能在OB區(qū)間內再次發(fā)生碰撞。

          5.【解析】從兩小球碰撞后到它們再次相遇,小球A和B的速度大小保持不變。根據它們通過的路程,可知小球B和小球A在碰撞后的速度大小之比為4┱1。

          設碰撞后小球A和B 的速度分別為,在碰撞過程中動量守恒,碰撞前后動能相等,有

                               ………… ①

                         ………… ②

          聯立以上兩式再由,可解出 m1∶m2=2∶1

          【答案】2∶1

          6.【解析】⑴碰后B上擺過程機械能守恒,可得

          ⑵兩球發(fā)生彈性碰撞過程系統動量守恒,機械能守恒。設與B碰前瞬間A的速度是v0,有2mv0=2mvA+mvB,,可得vA= v0/3,vB= 4v0/3,因此,同時也得到。

          ⑶先由A平拋的初速度vA和水平位移L/2,求得下落高度恰好是L。即兩球碰撞點到水平面的高度是L。A離開彈簧時的初動能可以認為就等于彈性力對A做的功。A離開彈簧上升的全過程用機械能守恒:,解得W=

          【答案】(1)   (2)W=                  

          7.【解析】此題是單個質點碰撞的多過程問題,既可以用動能定理與動量定理求解,也可以用力與運動關系與動量求解.設小物塊從高為h處由靜止開始沿斜面向下運動,到達斜面底端時速度為v。                                  

          由動能定理得          ①

          以沿斜面向上為動量的正方向。按動量定理,碰撞過程中擋板給小物塊的沖量

          ②                                         

          設碰撞后小物塊所能達到的最大高度為h’,則 ③                             

          同理,有   ⑤                                     

          式中,v’為小物塊再次到達斜面底端時的速度,I’為再次碰撞過程中擋板給小物塊的沖量。由①②③④⑤式得       ⑥式中   ⑦                                         

          由此可知,小物塊前4次與擋板碰撞所獲得的沖量成等比級數,首項為

            ⑧總沖量為

             由  ( ⑩得

                代入數據得     N?s     

          【答案】  N?s

          8.【解析】此題開始的繩連的系統,后粘合變成了小球單個質點的運動問題(1)對系統,設小球在最低點時速度大小為v1,此時滑塊的速度大小為v2,滑塊與擋板接觸前由系統的機械能守恒定律:mgl = mv12 +mv22

          由系統的水平方向動量守恒定律:mv1 = mv2

          對滑塊與擋板接觸到速度剛好變?yōu)榱愕倪^程中,擋板阻力對滑塊的沖量為:I = mv2

          聯立①②③解得I = m 方向向左④

          (2)小球釋放到第一次到達最低點的過程中,設繩的拉力對小球做功的大小為W,對小球由動能定理:mgl+W = mv12

          聯立①②⑤解得:W =-mgl,即繩的拉力對小球做負功,大小為mgl 。

          【答案】(1)I = m 方向向左;(2)mgl

          9.【解析】(1)設B在繩被拉斷后瞬間的速度為,到達C點時的速度為,有

             (1)    (2)

          代入數據得         (3)

          (2)設彈簧恢復到自然長度時B的速度為,取水平向右為正方向,有

              (4)      (5)

          代入數據得     其大小為4NS  (6)

          (3)設繩斷后A的速度為,取水平向右為正方向,有

           (7)   代入數據得

          【答案】(1) 。ǎ玻4NS    。ǎ常

          10.【解析】設擺球A、B的質量分別為,擺長為l,B球的初始高度為h1,碰撞前B球的速度為vB.在不考慮擺線質量的情況下,根據題意及機械能守恒定律得

                                                            ①

                                                              ②

          設碰撞前、后兩擺球的總動量的大小分別為P1、P2。有

          P1=mBv                                                            ③

          聯立①②③式得

                                                     ④

          同理可得

                                               ⑤

          聯立④⑤式得                                        

          代入已知條件得         由此可以推出≤4%                                                      

          所以,此實驗在規(guī)定的范圍內驗證了動量守恒定律。

          【答案】≤4%  

          名校試題

          1.【解析】(1)M靜止時,設彈簧壓縮量為l0,則Mg=kl0     

          速度最大時,M、m組成的系統加速度為零,則

          (M+m)g-k(l0+l1)=0     ②-

          聯立①②解得:k=50N/m   ③                                     

          [或:因M初位置和速度最大時都是平衡狀態(tài),故mg=kl1,解得:k=50N/m]

          (2)m下落h過程中,mgh=mv02     ④-

          m沖擊M過程中, m v0=(M+m)v       ⑤-

          所求過程的彈性勢能的增加量:ΔE=(M+m)g(l1+l2)+ (M+m)v2

          聯立④⑤⑥解得:ΔE=0.66J   ⑦

          (用彈性勢能公式計算的結果為ΔE=0.65J也算正確)

          【答案】ΔE=0.66J

          2.【解析】①根據圖象可知,物體C與物體A相碰前的速度為:v1=6m/s

                 相碰后的速度為:v2=2m/s   根據定量守恒定律得:

                 解得:m3=2.0kg

                 ②規(guī)定向左的方向為正方向,在第5.0s和第15s末物塊A的速度分別為:

                 v2=2m/s,v3=-2m/s 所以物塊A的動量變化為:

                 即在5.0s到15s的時間內物塊A動量變化的大小為:16kg?m/s 方向向右

          【答案】(1)m3=2.0kg   (2)16kg?m/s 方向向右

          3.【解析】(1)設第一顆子彈進入靶盒A后,子彈與靶盒的共內速度為。

            根據碰撞過程系統動量守恒,有:  

            設A離開O點的最大距離為,由動能定理有: 

            解得:  

          (2)根據題意,A在的恒力F的作用返回O點時第二顆子彈正好打入,由于A的動量與第二顆子彈動量大小相同,方向相反,故第二顆子彈打入后,A將靜止在O點。設第三顆子彈打入A后,它們的共同速度為,由系統動量守恒得:。2分)

            設A從離開O點到又回到O點所經歷的時間為t,取碰后A運動的方向為正方向,由動量定理得: 解得:   

          (3)從第(2)問的計算可以看出,第1、3、5、……(2n+1)顆子彈打入A后,A運動時間均為 故總時間  

          【答案】(1)  (2)   (3)

          4.【解析】對A、B、C整體,從C以v0滑上木塊到最終B、C達到共同速度V,

          其動量守恒既:m v0=2mV1+3mv     1.8=2V1+3×0.4        V1=0.3m/s          

          對A、B、C整體,從C以v0滑上木塊到C以V2剛離開長木板,

          此時A、B具有共同的速度V1。其動量守恒即:m v0=mV2+4mv1      

          1.8=V2+4×0.3         V2=0.6m/s  

           【答案】 (1)V1=0.3m/s  (2)  V2=0.6m/s    

          5.【解析】(1)B與A碰撞前速度由動能定理   

           得         

                B與A碰撞,由動量守恒定律        

                得               

                碰后到物塊A、B運動至速度減為零,彈簧的最大彈性勢能

                               

          (2)設撤去F后,A、B一起回到O點時的速度為,由機械能守恒得

                                       

             返回至O點時,A、B開始分離,B在滑動摩擦力作用下向左作勻減速直線運動,設物塊B最終離O點最大距離為x

           由動能定理得:                       

           【答案】(1)  (2)

          6.【解析】設小車初速度為V0,A與車相互作用摩擦力為f,      

          第一次碰后A與小車相對靜止時速為  V1,由動量守恒,

          得 mAV0-mBV0=(mA+mB)V1

             由能量守恒,得mAV02mBV02=f?L+(mA+mB)V12…        圖14

              多次碰撞后,A停在車右端,系統初動能全部轉化為內能,由能量守恒,得

              fL=(mA+mB)V02

              聯系以上三式,解得:(mA+mB)2=4(mA-mB)2  ∴mA=3mB

          【答案】mA=3mB

           

           

          7.【解析】(1)當B離開墻壁時,A的速度為v0,由機械能守恒有

                      mv02=E                         解得 v0=    

          (2)以后運動中,當彈簧彈性勢能最大時,彈簧達到最大程度時,A、B速度相等,設為v,由動量守恒有  2mv=mv0        解得               v=  

          (3)根據機械能守恒,最大彈性勢能為

                       Ep=mv022mv2=E        

          【答案】(1)v0=  (2)v=    (3)Ep=E

          8.【解析】設子彈的質量為m,木塊的質量為M,子彈射出槍口時的速度為v0。

          第一顆子彈射入木塊時,動量守恒 

          木塊帶著子彈做平拋運動   

          第二顆子彈射入木塊時,動量守恒 

          木塊帶著兩顆子彈做平拋運動   

          聯立以上各式解得   

          【答案】

          9.【解析】

            1. 車與緩沖器短時相撞過程根據動量守恒:           ②         2分

              O到D過程               ③      

              由①②③求得:                                   

              (2)D到O過程                ④       

              賽車從O點到停止運動              ⑤        

              車整個過程克服摩擦力做功        ⑥      

              由④⑤⑥求得:    

              【答案】(1)      (2)  

              10.【解析】(1)設所有物塊都相對木板靜止時的速度為 v,因木板與所有物塊系統水平方向不受外力,動量守恒,應有:

              m v+m?2 v+m?3 v+…+m?n v=(M + nm)v      1

                            M = nm,                              2

              解得:          v=(n+1)v,                                        6分

                  (2)設第1號物塊相對木板靜止時的速度為v,取木板與物塊1為系統一部分,第2 號物塊到第n號物塊為系統另一部分,則

                    木板和物塊1    △p =(M + m)v- m v

                    2至n號物塊    △p=(n-1)m?(v- v

              由動量守恒定律: △p=△p,

              解得            v= v,                    3                 6分

              (3)設第k號物塊相對木板靜止時的速度由v ,則第k號物塊速度由k v減為v的過程中,序數在第k號物塊后面的所有物塊動量都減小m(k v- v),取木板與序號為1至K號以前的各物塊為一部分,則 

              △p=(M+km)v-(m v+m?2 v+…+mk v)=(n+k)m v-(k+1)m v

              序號在第k以后的所有物塊動量減少的總量為

                   △p=(n-k)m(k v- v

              由動量守恒得   △p=△p, 即

              (n+k)m v-(k+1)m v= (n-k)m(k v- v),

              解得        v=     

              【答案】

              11.【解析】(1)設地球質量為M0,在地球表面,有一質量為m的物體,

                  設空間站質量為m′繞地球作勻速圓周運動時,

                  聯立解得,

                (2)因為探測器對噴射氣體做功的功率恒為P,而單位時間內噴氣質量為m,故在t時

                  間內,據動能定理可求得噴出氣體的速度為:

                  另一方面探測器噴氣過程中系統動量守恒,則:

                  又探測器的動能,

                  聯立解得:

              【答案】(1)         (2)

              考點預測題

              1.【解析】把A、B看成一個系統,彈簧彈力為內力,系統所受外力之和為零,故適用動量守恒定律,在燒斷細繩前系統總動量為零,燒斷細繩后,A、B的動量和也應為零.

              0=PA’-PB’    PA’= PB

              再根據,可得:                          

              【答案】

              2.【解析】因為沖理是矢量,兩個力的沖量相同要大小相等,方向相同;現時力對物體做的功,主要看力和在力方向上的位移。所以選項D正確

              【答案】D

              3.【解析】設地面對運動員的作用力為F,則由動量定理得:(F-mg)Δt=FΔt=mv+mgΔt;運動員從下蹲狀態(tài)到身體剛好伸直離開地面,地面對運動員做功為零,這是因為地面對人的作用力沿力的方向沒有位移.所以正確答案是B

              【答案】B

              4.【解析】此題是連續(xù)介質的沖擊作用的問題,不少考生對這題感到無從下手。解答的關鍵是選Δm作為研究對象(即所謂微元法),再運用動量定理列式。以1秒內下落的雨滴為研究對象,設圓柱形水杯的底成積為S,其質量為,根據動量定理,而,所以P=,故選項A正確。

              【答案】A

              5. 【解析】籃球從h1處下落的時間為t1,觸地時速度大小為v1,彈起時速度大小為v2.

                               ①     

                      ②    

              球彈起的速度大小      ③  

              球與地面作用時間        ④ 

              球觸地過程中取向上為正方向,根據動量定理有:

                        ⑤   

              即  ,代入數據得.

               根據牛頓第三定律,球對地面的平均作用力方向豎直向下,大小為39N.

              【答案】大小為39N.

              6.【解析】此題既可以用整體法求解,也可以用隔離法求解

              方法1:隔離法,先 以a和船(包括b)為系統,取為正方向,設a向前跳入水中后,船速為,有:             ①

                     再以b和船為系統,設b向后跳入水中后船速為,則

                                          ②

              解①②得,,方向與一致。

              方法2:整體法,以a、b和船整體為研究系統,選擇全過程為研究過程,有

                     也解得

              【答案】

              7.【解析】此題由研究對象的不同選取,所以解法也多種多樣

              方法1:隔離法,取其中的部分的物體用動量守恒,令為正方向,   

              以小船和大船投過的麻袋為系統

                                  ①

              以大船和小船投過的麻袋為系統

                               ②

              解①②得, 1 m/s   9 m/s

              方法2:整體法與隔離法,對所有船和麻袋整體,全過程用動量守恒

                           ③

              聯立③和①②式中的任意一個可得同樣結果

              【答案】1 m/s   9 m/s

              8.【解析】由自由落體的規(guī)律得……①

              由于球與地之間發(fā)生彈性碰撞,所以小球原速反彈,球再與木棍發(fā)生碰撞,取豎直向上為動量的正方向,根據動量守恒定律得m1v1-m2v1=m2v2……②

              B作豎直上拋運動m2v22/2=m2gh……③

              整理得h=(m1-m2)2H/m22……④ 代入數據得h=4.05m>1.25m                  圖19

              【答案】h=4.05m

              9.【解析】設為A從離開桌面至落

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>