日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17. 查看更多

           

          題目列表(包括答案和解析)

          (2011•自貢三模)(本小題滿分12分>
          設(shè)平面直角坐標中,O為原點,N為動點,|
          ON
          |=6,
          ON
          =
          5
          OM
          .過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
          OT
          =
          M1M
          +
          N1N
          ,記點T的軌跡為曲線C.
          (I)求曲線C的方程:
          (H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
          OP
          =3
          OA
          ,S△PAQ=-26tan∠PAQ求直線L的方程.

          查看答案和解析>>

          (文) (本小題滿分12分已知函數(shù)y=4-2
          3
          sinx•cosx-2sin2x(x∈R)
          ,
          (1)求函數(shù)的值域和最小正周期;
          (2)求函數(shù)的遞減區(qū)間.

          查看答案和解析>>

          (07年福建卷理)(本小題滿分12分)在中,,

          (Ⅰ)求角的大小;

          (Ⅱ)若最大邊的邊長為,求最小邊的邊長.

          查看答案和解析>>

          (07年福建卷文)(本小題滿分12分)

          設(shè)函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).

          (I)求f (x)的最小值h(t);

          (II)若h(t)<-2t+m對t∈(0,2)恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          (07年福建卷文)(本小題滿分12分)

          如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點.

          (I)求證:AB1⊥平面A1BD;

          (II)求二面角A-A1D-B的大小.

          查看答案和解析>>

           

          一、CABCB   BDADD   AC

          二、13.  0.1;14.;15. 36;16.存在,通項公式。

          三、

          17.解:(1)依題意得:

          得:

          所以:,即,………………………………4分

            1. 20090508

              (2)設(shè),則

                  由正弦定理:,

                     所以兩個正三角形的面積和,…………8分

                            ……………10分

                     ,

                     所以:……………………………………12分

              18.解:(1);………………………4分

                     (2)消費總額為1500元的概率是:………………………5分

              消費總額為1400元的概率是:………6分

              消費總額為1300元的概率是:

              所以消費總額大于或等于1300元的概率是;……………………8分

              (3),

              ,

              所以的分布列為:

              0

              1

              2

              3

               

              0.294

              0.448

              0.222

              0.036

              ………………………………………………11分

                     數(shù)學期望是:!12分

              19.(1)證明:因為,所以平面,

              又因為平面,

              平面平面;…………………4分

              (2)因為,所以平面,

              所以點到平面的距離等于點E到平面的距離,

              過點E作EF垂直CD且交于點F,因為平面平面,

              所以平面,

              所以的長為所求,………………………………………………………6分

              因為,所以為二面角的平面角,,=1,

              到平面的距離等于1;…………………………8分

                     (3)連接,由平面,,得到,

                     所以是二面角的平面角,

                     ,…………………………………………………11分

                     又因為平面平面,二面角的大小是!12分

              20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

                    

                     解得,所以,…………………3分

                     所以,

                     ,

                     所以;…………………………………………………………………6分

                     (2),因為

                     所以數(shù)列是遞增數(shù)列,…8分

                     當且僅當時,取得最小值,則:

                     所以,即的取值范圍是。………………12分

              21.解:(1)設(shè)點的坐標為,則點的坐標為,點的坐標為,

              因為,所以,

              得到:,注意到不共線,

              所以軌跡方程為;……………5分

              (2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為

              假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為

               

              ……………………………………………………7分

              弦長為定值,則,即,

              此時……………………………………………………9分

              所以當時,存在直線,截得的弦長為

                 當時,不存在滿足條件的直線!12分

              22.解:(1)設(shè),因為 上的增函數(shù),且,所以上的增函數(shù),

              所以,得到;所以的取值范圍為………4分

              (2)由條件得到,

              猜測最大整數(shù),……6分

              現(xiàn)在證明對任意恒成立,

              等價于,

              設(shè),

              時,,當時,,

              所以對任意的都有,

              對任意恒成立,

              所以整數(shù)的最大值為2;……………………………………………………9分

              (3)由(2)得到不等式,

              所以,……………………11分

              所以原不等式成立!14分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>