日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求動點的軌跡E的方程, 查看更多

           

          題目列表(包括答案和解析)

          已知定點A(1,0),B(-1,0),C(0,1),D(0,2),動點P滿足:
          AP
          BP
          =k|
          PC
          |
          2

          (1)求動點P軌跡M的方程,并說明方程表示的曲線類型;
          (2)當k=2時:
          ①E是x軸上的動點,EK,EQ分別切曲線M于K,Q兩點,如果|KQ|=
          4
          5
          5
          ,求線段KQ的垂直平分線方程;
          ②若E點在△ABC邊上運動,EK,EQ分別切曲線M于K,Q兩點,求四邊形DKEQ的面積的取值范圍.

          查看答案和解析>>

          (2012•邯鄲一模)在平面直角坐標系中,點P(x,y)為動點,已知點A(
          2
          ,0)
          B(-
          2
          ,0)
          ,直線PA與PB的斜率之積為-
          1
          2

          (I)求動點P軌跡E的方程;
          ( II)過點F(1,0)的直線l交曲線E于M,N兩點,設(shè)點N關(guān)于x軸的對稱點為Q(M、Q不重合),求證:直線MQ過定點.

          查看答案和解析>>

          在平面直角坐標系中,若,且

          (1)求動點的軌跡的方程;

          (2)已知定點,若斜率為的直線過點并與軌跡交于不同的兩點,且對于軌跡上任意一點,都存在,使得成立,試求出滿足條件的實數(shù)的值。

          查看答案和解析>>

          (本題滿分14分)

          已知點是⊙上的任意一點,過垂直軸于,動點滿足。

          (1)求動點的軌跡方程; 

          (2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

           

          查看答案和解析>>

          已知、分別是直線上的兩個動點,線段的長為的中點.

          (1)求動點的軌跡的方程;

          (2)過點任意作直線(與軸不垂直),設(shè)與(1)中軌跡交于兩點,與軸交于點.若,,證明:為定值.

           

          查看答案和解析>>

           

          一、CABCB   BDADD   AC

          二、13.  0.1;14.;15. 36;16.存在,通項公式。

          三、

          17.解:(1)依題意得:

          得:,

          所以:,即,………………………………4分

            1. 20090508

              (2)設(shè),則,

                  由正弦定理:,

                     所以兩個正三角形的面積和,…………8分

                            ……………10分

                     ,

                     所以:……………………………………12分

              18.解:(1);………………………4分

                     (2)消費總額為1500元的概率是:………………………5分

              消費總額為1400元的概率是:………6分

              消費總額為1300元的概率是:

              ,

              所以消費總額大于或等于1300元的概率是;……………………8分

              (3)

              ,

              所以的分布列為:

              0

              1

              2

              3

               

              0.294

              0.448

              0.222

              0.036

              ………………………………………………11分

                     數(shù)學期望是:!12分

              19.(1)證明:因為,所以平面,

              又因為,平面,

              平面平面;…………………4分

              (2)因為,所以平面,

              所以點到平面的距離等于點E到平面的距離,

              過點E作EF垂直CD且交于點F,因為平面平面,

              所以平面,

              所以的長為所求,………………………………………………………6分

              因為,所以為二面角的平面角,,=1,

              到平面的距離等于1;…………………………8分

                     (3)連接,由平面,得到,

                     所以是二面角的平面角,

                     ,…………………………………………………11分

                     又因為平面平面,二面角的大小是!12分

              20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

                     ,

                     解得,所以,…………………3分

                     所以

                     ,

                     所以;…………………………………………………………………6分

                     (2),因為

                     所以數(shù)列是遞增數(shù)列,…8分

                     當且僅當時,取得最小值,則:

                     所以,即的取值范圍是!12分

              21.解:(1)設(shè)點的坐標為,則點的坐標為,點的坐標為,

              因為,所以,

              得到:,注意到不共線,

              所以軌跡方程為;……………5分

              (2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為

              假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

               

              ……………………………………………………7分

              弦長為定值,則,即,

              此時……………………………………………………9分

              所以當時,存在直線,截得的弦長為,

                 當時,不存在滿足條件的直線!12分

              22.解:(1)設(shè),因為 上的增函數(shù),且,所以上的增函數(shù),

              所以,得到;所以的取值范圍為………4分

              (2)由條件得到,

              猜測最大整數(shù),……6分

              現(xiàn)在證明對任意恒成立,

              等價于,

              設(shè),

              時,,當時,,

              所以對任意的都有,

              對任意恒成立,

              所以整數(shù)的最大值為2;……………………………………………………9分

              (3)由(2)得到不等式,

              所以,……………………11分

              所以原不等式成立!14分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>