日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于函數(shù)f(x)=ax2+.若存在實數(shù)x0,使f(x0)= x0成立.則稱x0為f(x)的不動點.(1)當a=2,b=-2時.求f(x)的不動點,(2)若對于任何實數(shù)b,函數(shù)f(x)恒有兩相異的不動點.求實數(shù)a的取值范圍, 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分) 對于函數(shù)fx),若存在x0∈R,使fx0)=x0成立, 則稱x0fx)的不動點.  已知函數(shù)fx)=ax2+(b+1)x+b-1(a≠0)
          (1)當a=1,b=-2時,求fx)的不動點;
          (2)若對于任意實數(shù)b,函數(shù)fx)恒有兩個相異的不動點,求a的取值范圍

          查看答案和解析>>

          (本小題滿分14分)已知函數(shù)f(x)=aex,g(x)= lna-ln(x +1)(其中a為常數(shù),e為自然對數(shù)底),函數(shù)y =f(x)在A(0,a)處的切線與y =g(x)在B(0,lna)處的切線互相垂直.

            (Ⅰ) 求f(x) ,g(x)的解析式;

            (Ⅱ) 求證:對任意n ÎN*,    f(n)+g(n)>2n

            (Ⅲ) 設y =g(x-1)的圖象為C1,h(x)=-x2+bx的圖象為C2,若C1C2相交于P、Q,過PQ中點垂直于x軸的直線分別交C1、C2M、N,問是否存在實數(shù)b,使得C1M處的切線與C2N處的切線平行?說明你的理由.

          查看答案和解析>>

          (本小題滿分14分)已知函數(shù)f(x)=aexg(x)= lna-ln(x +1)(其中a為常數(shù),e為自然對數(shù)底),函數(shù)y =f(x)在A(0,a)處的切線與y =g(x)在B(0,lna)處的切線互相垂直.

            (Ⅰ) 求f(x) ,g(x)的解析式;

            (Ⅱ) 求證:對任意n ÎN*,    f(n)+g(n)>2n

            (Ⅲ) 設y =g(x-1)的圖象為C1,h(x)=-x2+bx的圖象為C2,若C1C2相交于P、Q,過PQ中點垂直于x軸的直線分別交C1、C2M、N,問是否存在實數(shù)b,使得C1M處的切線與C2N處的切線平行?說明你的理由.

          查看答案和解析>>

          (本小題滿分14分)已知函數(shù)f(x)滿足對任意實數(shù)x,y都有fx+y)=fx)+fy)+xy+1,且f(-2)=-2.
          (1)求f(1)的值;
          (2)證明:對一切大于1的正整數(shù)t,恒有ft)>t;
          (3)試求滿足ft)=t的整數(shù)的個數(shù),并說明理由.

          查看答案和解析>>

          (本小題滿分14分)
          已知函數(shù)f(x)=-kx,.
          (1)若k=e,試確定函數(shù)f(x)的單調區(qū)間;
          (2)若k>0,且對于任意確定實數(shù)k的取值范圍;
          (3)設函數(shù)F(x)=f(x)+f(-x),求證:F(1)F(2)…F(n)>)。

          查看答案和解析>>

          一、選擇題(每小題5分,共60分)

          1-12BDCBC        CCDBA         AC

          二、填空題(每題4分,共16分)

          13、          14、        15、1     16、15

          三、解答題(共74分)

          17、(本小題滿分12分)

          (1)

          函數(shù)的最小正周期是

          時,即時,函數(shù)有最大值1。

          (2)由,得

          時,取得,函數(shù)的單調遞減區(qū)間是

          (3)

          18、(本小題滿分12分)

          (1)由題意知:,∴=1

          ①,∴當 n≥2時,

          ①-②得:

          >0,∴,(n≥2且

          是以=1為首項,d=1為公差的等差數(shù)列

          =n

          (2)

          是以為首項,為公比的等比數(shù)列

          ,∴

                                  ①

                     ②

          ①-②得

          19、(本小題滿分12分)

          (1)當時,

          上是增函數(shù)

          上是增函數(shù)

          ∴當時,

          (2)上恒成立

          上恒成立

          上恒成立

          上是減函數(shù),

          ∴當時,

          ,

          ∴所求實數(shù)a的取值范圍為

          20、(本小題滿分12分)

          此時

          ,∴,∴

          ∴實數(shù)a不存在

          21、(本小題滿分12分)

          (1)若方程表示圓,則,∴

          (2)設M、N的坐標分別為、

          ,得

          ,∴,∴    ①

          ,得

          代入①得,

          (3)設MN為直徑的圓的方程為,

          ∴所求圓的方程為

          22、(本小題滿分14分)

          (1)當時,

          設x為其不動點,則,即

          或2,即的不動點是-1,2

          (2)由

          由題意知,此方程恒有兩個相異的實根

          對任意的恒成立

          ,∴

          (3)設,則直線AB的斜率,∴

          由(2)知AB中點M的坐標為

          又∵M在線段AB的垂直平分線上,∴

          (當且僅當時取等號)

          ∴實數(shù)b的取值范圍為

           

           


          同步練習冊答案