日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ∴存在直線使得四邊形OASB的對角線相等. 查看更多

           

          題目列表(包括答案和解析)

          .(本小題滿分14分)

          已知圓M:及定點(diǎn),點(diǎn)P是圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足

          (1)求點(diǎn)G的軌跡C的方程;

          (2)過點(diǎn)K(2,0)作直線與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)是否存在這樣的直線使四邊形OASB的對角線相等?若存在,求出直線的方程;若不存在,說明理由.

           

           

           

          查看答案和解析>>

          精英家教網(wǎng)如圖,線段MN的兩個(gè)端點(diǎn)M、N分別在x軸、y 軸上滑動(dòng),|MN|=5,點(diǎn)P是線段MN上一點(diǎn),且
          MP
          =
          2
          3
          PN
          ,點(diǎn)P隨線段MN的運(yùn)動(dòng)而變化.
          (1)求點(diǎn)P的軌跡C的方程;
          (2)過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)
          OS
          =
          OA
          +
          OB
          ,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

          查看答案和解析>>

          已知圓M:(x+
          5
          )2+y2=36
          ,定點(diǎn)N(
          5
          ,0)
          ,點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足
          NP
          =2
          NQ
          ,
          GQ
          NP
          =0

          (I)求點(diǎn)G的軌跡C的方程;
          (II)過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)
          OS
          =
          OA
          +
          OB
          ,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

          查看答案和解析>>

          (理)已知圓M:(x+
          5
          2+y2=36,定點(diǎn)N(
          5
          ,0
          ),點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)G在MP上,且滿足|GP|=|GN|
          (1)求點(diǎn)G的軌跡C的方程;
          (2)過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)
          OS
          =
          OA
          +
          OB
          ,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

          查看答案和解析>>

          已知圓上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足.

             (I)求點(diǎn)G的軌跡C的方程;

             (II)過點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè) 是否存在這樣的直線,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線的方程;若不存在,試說明理由.

          查看答案和解析>>


          同步練習(xí)冊答案