日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以.解得a=2.∴c=1.b=. 查看更多

           

          題目列表(包括答案和解析)

          (選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于N,過
          N點(diǎn)的切線交CA的延長(zhǎng)線于P.
          (1)求證:PM2=PA•PC;
          (2)若⊙O的半徑為2
          3
          ,OA=
          3
          OM,求MN的長(zhǎng).
          B.選修4-2:矩陣與變換
          曲線x2+4xy+2y2=1在二階矩陣M=
          .
          1a
          b1
          .
          的作用下變換為曲線x2-2y2=1,求實(shí)數(shù)a,b的值;
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
          2
          cos(θ+
          π
          4
          )
          ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          y=-1-
          3
          5
          (t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
          D.選修4-5:不等式選講
          設(shè)a,b,c均為正實(shí)數(shù).
          (1)若a+b+c=1,求a2+b2+c2的最小值;
          (2)求證:
          1
          2a
          +
          1
          2b
          +
          1
          2c
          1
          b+c
          +
          1
          c+a
          +
          1
          a+b

          查看答案和解析>>

          C

          [解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          已知向量a=(x-1,2),b=(2,1),則a⊥b的充要條件是

          A.x=-  B.x-1   C.x=5    D.x=0

          【解析】有向量垂直的充要條件得2(x-1)+2=0,所以x=0.D正確.

           

          查看答案和解析>>

          已知正三角形ABC的頂點(diǎn)A(1,1),B(1,3),頂點(diǎn)C在第一象限,若點(diǎn)(x,y)在△ABC內(nèi)部,則z=-x+y的取值范圍是

          (A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

          【解析】    做出三角形的區(qū)域如圖,由圖象可知當(dāng)直線經(jīng)過點(diǎn)B時(shí),截距最大,此時(shí),當(dāng)直線經(jīng)過點(diǎn)C時(shí),直線截距最小.因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912420929634592/SYS201207091242163901965792_ST.files/image005.png">軸,所以,三角形的邊長(zhǎng)為2,設(shè),則,解得,因?yàn)轫旤c(diǎn)C在第一象限,所以,即代入直線,所以的取值范圍是,選A.

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案