日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 將②代入①.得│MN│=2-. 查看更多

           

          題目列表(包括答案和解析)

          已知向量),向量,

          .

          (Ⅰ)求向量; (Ⅱ)若,求.

          【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。

          (1)問中∵,∴,…………………1分

          ,得到三角關(guān)系是,結(jié)合,解得。

          (2)由,解得,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

          解析一:(Ⅰ)∵,∴,…………1分

          ,∴,即   ①  …………2分

           ②   由①②聯(lián)立方程解得,5分

               ……………6分

          (Ⅱ)∵,,  …………7分

          ,               ………8分

          又∵,          ………9分

          ,            ……10分

          解法二: (Ⅰ),…………………………………1分

          ,∴,即,①……2分

              ②

          將①代入②中,可得   ③    …………………4分

          將③代入①中,得……………………………………5分

             …………………………………6分

          (Ⅱ) 方法一 ∵,,∴,且……7分

          ,從而.      …………………8分

          由(Ⅰ)知, ;     ………………9分

          .     ………………………………10分

          又∵,∴, 又,∴    ……11分

          綜上可得  ………………………………12分

          方法二∵,,∴,且…………7分

          .                                 ……………8分

          由(Ⅰ)知 .                …………9分

                       ……………10分

          ,且注意到,

          ,又,∴   ………………………11分

          綜上可得                    …………………12分

          (若用,又∵ ∴ ,

           

          查看答案和解析>>

          在△中,∠,∠,∠的對邊分別是,且 .

          (1)求∠的大小;(2)若,求的值.

          【解析】第一問利用余弦定理得到

          第二問

          (2)  由條件可得 

          將    代入  得  bc=2

          解得   b=1,c=2  或  b=2,c=1  .

           

          查看答案和解析>>

          已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為

          (Ⅰ)求橢圓C的標準方程;

          (Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

          【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。

          第一問中,可設(shè)橢圓的標準方程為 

          則由長軸長等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標準方程為

          第二問中,

          假設(shè)存在這樣的直線,設(shè),MN的中點為

           因為|ME|=|NE|所以MNEF所以

          (i)其中若時,則K=0,顯然直線符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得

          代入1,2式中得到范圍。

          (Ⅰ) 可設(shè)橢圓的標準方程為 

          則由長軸長等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標準方程為

           (Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點為

           因為|ME|=|NE|所以MNEF所以

          (i)其中若時,則K=0,顯然直線符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得……②  ……………………9分

          代入①式得,解得………………………………………12分

          代入②式得,得

          綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)f(x)=Acos(ωx+)(x∈R)的圖像的一部分如下圖所示,其中A>0,ω>0,||<,為了得到函數(shù)f(x)的圖像,只要將函數(shù)g(x)=2()(x∈R)的圖像上所有的點(    )         

          A.向右平移個單位長度,再把所得各點的橫坐標縮短到原來的倍,縱坐標不變

          B.向右平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

          C.向左平移個單位長度,再把得所各點的橫坐標縮短到原來的倍,縱坐標不變

          D.向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

           

          查看答案和解析>>

          把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

          (1)求函數(shù)的解析式; (2)若,證明:.

          【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。

          (1)解:設(shè)上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

          (2) 證明:令,……6分

          ……8分

          ,∴,∴上單調(diào)遞增.……10分

          ,即

           

          查看答案和解析>>


          同步練習(xí)冊答案