日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 故直線的方程是 查看更多

           

          題目列表(包括答案和解析)

          在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.

          (1)求圓的方程;

           (2)若圓與直線交于、兩點(diǎn),且,求的值.

          【解析】本試題主要是考查了直線與圓的位置關(guān)系的運(yùn)用。

          (1)曲線軸的交點(diǎn)為(0,1),

          軸的交點(diǎn)為(3+2,0),(3-2,0) 故可設(shè)的圓心為(3,t),則有32+(t-1)2=(2)2+t2,解得t=1.

          (2)因?yàn)閳A與直線交于、兩點(diǎn),且。聯(lián)立方程組得到結(jié)論。

           

          查看答案和解析>>

          設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

          ,得,

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

          由條件得消去并整理得  ②

          ,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

          由P在橢圓上,有

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

          ,,得整理得.

          于是,代入③,

          整理得

          解得,

          所以.

           

          查看答案和解析>>

          已知點(diǎn)),過(guò)點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).

          (Ⅰ)若,求的值;

          (Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;

          (Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,

          求圓面積的最小值.

          【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

          中∵直線與曲線相切,且過(guò)點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。

          (3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

          (Ⅰ)由可得,.  ------1分

          ∵直線與曲線相切,且過(guò)點(diǎn),∴,即,

          ,或, --------------------3分

          同理可得:,或----------------4分

          ,∴. -----------------5分

          (Ⅱ)由(Ⅰ)知,,,則的斜率,

          ∴直線的方程為:,又,

          ,即. -----------------7分

          ∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分

          故圓的面積為. --------------------9分

          (Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,    ………10分

          ,

          當(dāng)且僅當(dāng),即,時(shí)取等號(hào).

          故圓面積的最小值

           

          查看答案和解析>>

          已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn).

          (Ⅰ)求橢圓的方程;

          (Ⅱ)是否存過(guò)點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

          【解析】第一問(wèn)利用設(shè)橢圓的方程為,由題意得

          解得

          第二問(wèn)若存在直線滿足條件的方程為,代入橢圓的方程得

          因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,

          所以

          所以.解得。

          解:⑴設(shè)橢圓的方程為,由題意得

          解得,故橢圓的方程為.……………………4分

          ⑵若存在直線滿足條件的方程為,代入橢圓的方程得

          因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

          所以

          所以

          ,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即,

          所以

          所以,解得

          因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.

          于是存在直線L1滿足條件,其方程為y=1/2x

           

          查看答案和解析>>

          給出問(wèn)題:已知△ABC滿足a·cosA=b·cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:

          故△ABC事直角三角形.

          (ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于

          故△ABC是等腰三角形.

          綜上可知,△ABC是等腰直角三角形.

          請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫(xiě)出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫(xiě)出你認(rèn)為本題正確的結(jié)果________.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案