日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ∵.所以為等差數列. --- 2分 查看更多

           

          題目列表(包括答案和解析)

          已知等差數列{an}的首項為p,公差為d(d>0).對于不同的自然數n,直線x=an與x軸和指數函數數學公式的圖象分別交于點An與Bn(如圖所示),記Bn的坐標為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
          (1)求證數列{sn}是公比絕對值小于1的等比數列;
          (2)設{an}的公差d=1,是否存在這樣的正整數n,構成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
          (3)(理)設{an}的公差d(d>0)為已知常數,是否存在這樣的實數p使得(1)中無窮等比數列{sn}各項的和S>2010?并請說明理由.
          (4)(文)設{an}的公差d=1,是否存在這樣的實數p使得(1)中無窮等比數列{sn}各項的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.

          查看答案和解析>>

          已知等差數列{an}的首項為p,公差為d(d>0).對于不同的自然數n,直線x=an與x軸和指數函數的圖象分別交于點An與Bn(如圖所示),記Bn的坐標為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
          (1)求證數列{sn}是公比絕對值小于1的等比數列;
          (2)設{an}的公差d=1,是否存在這樣的正整數n,構成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
          (3)(理科做,文科不做)設{an}的公差d=1,是否存在這樣的實數p使得(1)中無窮等比數列{sn}各項的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.(參考數據:210=1024)

          查看答案和解析>>

          已知等差數列{an}的首項為p,公差為d(d>0).對于不同的自然數n,直線x=an與x軸和指數函數的圖象分別交于點An與Bn(如圖所示),記Bn的坐標為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
          (1)求證數列{sn}是公比絕對值小于1的等比數列;
          (2)設{an}的公差d=1,是否存在這樣的正整數n,構成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
          (3)(理)設{an}的公差d(d>0)為已知常數,是否存在這樣的實數p使得(1)中無窮等比數列{sn}各項的和S>2010?并請說明理由.
          (4)(文)設{an}的公差d=1,是否存在這樣的實數p使得(1)中無窮等比數列{sn}各項的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.

          查看答案和解析>>

          已知遞增等差數列滿足:,且成等比數列.

          (1)求數列的通項公式;

          (2)若不等式對任意恒成立,試猜想出實數的最小值,并證明.

          【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為

          由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設數列公差為,由題意可知,即,

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于

          時,;當時,;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數學歸納法.

          時,,成立.

          假設當時,不等式成立,

          時,, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調性證明.

          要證 

          只要證  ,  

          設數列的通項公式,        …………10分

          ,    …………12分

          所以對,都有,可知數列為單調遞減數列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>

          有n個首項為1的等差數列,設第m個數列的k項為amk(m,k=1,2,3,…,n,n≥3),公差為dm,并且a1n,a2n,a3n,…,ann成等差數列.
          (1)當d3=2時,求a32,a33,a34以及a3n;
          (2)證明dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多項式),并求p1+p2的值;
          (3)當d1=1,d2=3時,將數列{dm}分組如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每組數的個數構成等差數列),設前m組中所有數之和為(cm4,(cm>0),求數列{2cm,dm}的前n項和Sn

          查看答案和解析>>


          同步練習冊答案