日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)變化時(shí).的變化情況如下表: 查看更多

           

          題目列表(包括答案和解析)

          受日月引力影響,海水會(huì)發(fā)生漲退潮現(xiàn)象.通常情況下,船在漲潮時(shí)駛進(jìn)港口,退潮時(shí)離開港口.某港口在某季節(jié)每天港口水位的深度(米)是時(shí)間,單位:小時(shí),表示0:00—零時(shí))的函數(shù),其函數(shù)關(guān)系式為.已知一天中該港口水位的深度變化有如下規(guī)律:出現(xiàn)相鄰兩次最高水位的深度的時(shí)間差為12小時(shí),最高水位的深度為12米,最低水位的深度為6米,每天13:00時(shí)港口水位的深度恰為10.5米.
          (1)試求函數(shù)的表達(dá)式;
          (2)某貨船的吃水深度(船底與水面的距離)為7米,安全條例規(guī)定船舶航行時(shí)船底與海底的距離不小于3.5米是安全的,問該船在當(dāng)天的什么時(shí)間段能夠安全進(jìn)港?若該船欲于當(dāng)天安全離港,則它最遲應(yīng)在當(dāng)天幾點(diǎn)以前離開港口?

          查看答案和解析>>

          受日月引力影響,海水會(huì)發(fā)生漲退潮現(xiàn)象.通常情況下,船在漲潮時(shí)駛進(jìn)港口,退潮時(shí)離開港口.某港口在某季節(jié)每天港口水位的深度(米)是時(shí)間,單位:小時(shí),表示0:00—零時(shí))的函數(shù),其函數(shù)關(guān)系式為.已知一天中該港口水位的深度變化有如下規(guī)律:出現(xiàn)相鄰兩次最高水位的深度的時(shí)間差為12小時(shí),最高水位的深度為12米,最低水位的深度為6米,每天13:00時(shí)港口水位的深度恰為10.5米.
          (1)試求函數(shù)的表達(dá)式;
          (2)某貨船的吃水深度(船底與水面的距離)為7米,安全條例規(guī)定船舶航行時(shí)船底與海底的距離不小于3.5米是安全的,問該船在當(dāng)天的什么時(shí)間段能夠安全進(jìn)港?若該船欲于當(dāng)天安全離港,則它最遲應(yīng)在當(dāng)天幾點(diǎn)以前離開港口?

          查看答案和解析>>

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

          ,得

          當(dāng)x變化時(shí),,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

          ,得

          ①當(dāng)時(shí),上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時(shí),,對(duì)于,,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

          當(dāng)時(shí),

                                

                                

          在(2)中取,得 ,

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>

          已知函數(shù)其中為自然對(duì)數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對(duì)于任意的,都有成立,求的取值范圍.

          【解析】第一問中,當(dāng)時(shí),,.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。

          第二問中,∵,,      

          ∴原不等式等價(jià)于:,

          , 亦即

          分離參數(shù)的思想求解參數(shù)的范圍

          解:(Ⅰ)當(dāng)時(shí),

          當(dāng)上變化時(shí),,的變化情況如下表:

           

           

          1/e

          時(shí),,

          (Ⅱ)∵,,      

          ∴原不等式等價(jià)于:,

          , 亦即

          ∴對(duì)于任意的,原不等式恒成立,等價(jià)于對(duì)恒成立,

          ∵對(duì)于任意的時(shí), (當(dāng)且僅當(dāng)時(shí)取等號(hào)).

          ∴只需,即,解之得.

          因此,的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

          (Ⅰ)求實(shí)數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

          【解析】第一問當(dāng)時(shí),,則。

          依題意得:,即    解得

          第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          (Ⅰ)當(dāng)時(shí),,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時(shí),,令

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,,!上的最大值為2.

          ②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

          當(dāng)時(shí), 上單調(diào)遞增!最大值為。

          綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

          當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為

          (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時(shí),

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

          ∴對(duì)于,方程(**)總有解,即方程(*)總有解。

          因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案