日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅲ)求證:. 查看更多

           

          題目列表(包括答案和解析)

          (Ⅰ)求證:
          sinx
          1-cosx
          =
          1+cosx
          sinx
          ;
          (Ⅱ)化簡:
          tan(3π-α)
          sin(π-α)sin(
          3
          2
          π-α)
          +
          sin(2π-α)cos(α-
          2
          )
          sin(
          2
          +α)cos(2π+α)

          查看答案和解析>>

          (Ⅰ)求證:
          C
          m
          n
          =
          n
          m
          C
          m-1
          n-1
          ;
          (Ⅱ)利用第(Ⅰ)問的結果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
          (Ⅲ)其實我們常借用構造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
          (1+x)[1-(1+x)n]
          1-(1+x)
          =
          (1+x)n+1-(1+x)
          x
          ;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

          查看答案和解析>>

          (Ⅰ)求證:
          sinx
          1-cosx
          =
          1+cosx
          sinx

          (Ⅱ)化簡:
          tan(3π-α)
          sin(π-α)sin(
          3
          2
          π-α)
          +
          sin(2π-α)cos(α-
          2
          )
          sin(
          2
          +α)cos(2π+α)

          查看答案和解析>>

          (Ⅰ)求證:;
          (Ⅱ)化簡:

          查看答案和解析>>

          (Ⅰ)求證:;
          (Ⅱ)利用第(Ⅰ)問的結果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
          (Ⅲ)其實我們常借用構造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

          查看答案和解析>>

          1.B  2.D  3.A  4.A  5.A  6.B  7.B  8.B  9.C  10.C

          11.     12.4       13.2.442       14.       15.9,15

          16.(Ⅰ),∴,

          ,∴

           

          (Ⅱ)

          ,∴,

          17.(Ⅰ)從4名運動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運動員所抽靶位號與參賽號相同的概率為 

             (Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524

             

          所以2號射箭運動員的射箭水平高.

          18.(Ⅰ)設橢圓方程為,則有,∴a=6, b=3.∴橢圓C的方程為

          (Ⅱ),設點,則

          ,∵,∴,∴的最小值為6.

          19.(Ⅰ)在梯形ABCD中,∵

          ∴四邊形ABCD是等腰梯形,

          ,∴

          又∵平面平面ABCD,交線為AC,∴平面ACFE.

          (Ⅱ)當時,平面BDF. 在梯形ABCD中,設,連結FN,則

          ,∴∴MFAN,

          ∴四邊形ANFM是平行四邊形. ∴

          又∵平面BDF,平面BDF. ∴平面BDF.

          (Ⅲ)取EF中點G,EB中點H,連結DG、GH、DH,∵DE=DF,∴平面ACFE,∴  又∵,∴又∵,∴

          是二面角B―EF―D的平面角.

          在△BDE中,

          又又∴在△DGH中,

          由余弦定理得即二面角B―EF―D的大小為

          20.(Ⅰ)設,,

          單調遞增.

          (Ⅱ)當時,,又,,即;

            當時,,,由,得.

          的值域為

          (Ⅲ)當x=0時,,∴x=0為方程的解.

          當x>0時,,∴,∴

          當x<0時,,∴,∴

          即看函數(shù)

          與函數(shù)圖象有兩個交點時k的取值范圍,應用導數(shù)畫出的大致圖象,

          ,∴

          21.(Ⅰ)當時, ,∴,令 有x=0,

          單調遞減;當單調遞增.

          ;

          (Ⅱ)∵,∴

          為首項是1、公比為的等比數(shù)列. ∴;

          (Ⅲ)∵,由(1)知,

          ,即證.

           


          同步練習冊答案