日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          已知函數(shù)。

          (1)證明:

          (2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

          (3)設數(shù)列滿足:,設

          若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

          試求的最大值。

          查看答案和解析>>

          (本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

          (Ⅰ)當點軸上移動時,求動點的軌跡方程;

          (Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.

          查看答案和解析>>

          (本小題滿分14分)設函數(shù)

           (1)求函數(shù)的單調(diào)區(qū)間;

           (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

           (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

          查看答案和解析>>

          (本小題滿分14分)

          已知,其中是自然常數(shù),

          (1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

          (2)求證:在(1)的條件下,

          (3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          (本小題滿分14分)

          設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

          (I)求數(shù)列的通項公式;

          (II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;

          (III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

          查看答案和解析>>

           

          一、選擇題(本大題共8小題,每小題5分,滿分40分.)

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          選項

          C

          A

          C

          B

          D

          B

          B

          A

          二、填空題(共7小題,計30分。其中第9、10、11、12小題必做;第13、14、15題選做兩題,若3題全做,按前兩題得分計算。)

          9、 4   .10、__10__(用數(shù)字作答).11、____。12、___0___。

          13、      ;14、___8_____.15、   3   。

           

          三、解答題(考生若有不同解法,請酌情給分!)

          16.解:(1)…………2分

          ……………………………………3分

          ………………………………………………5分

          (2)…………………………7分

          …………………………………9分

          ………………………………………10分

          ∴當………………………………12分

           

          17.解:⑴、記甲、乙兩人同時參加崗位服務為事件,那么,即甲、乙兩人同時參加崗位服務的概率是.……………………4分

          ⑵、記甲、乙兩人同時參加同一崗位服務為事件,

          那么,…………………………………………………………6分

          所以,甲、乙兩人不在同一崗位服務的概率是.………8分

          ⑶、隨機變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務,則

          .所以,

          的分布列是:…………………………………………………………………… 10分

          1

          2

              ∴…………………………………………………………12分

           

          18.

          解:設2008年末汽車保有量為a1萬輛,以后各年末汽車保有量依次為a2萬輛,a3萬輛,…,每年新增汽車x萬輛!1分

          a1=30,a2=a1×0.94+x,a3=a2×0.94+x=a1×0.942x×0.94+x,…

          故an=a1×0.94n-1x(1+0.94+…+0.94n-2

          .………………………………………………6分

          (1):當x=3萬輛時,an≤30

           則每年新增汽車數(shù)量控制在3萬輛時,汽車保有量能達到要求!9分

            (2):如果要求汽車保有量不超過60萬輛,即an≤60(n=1,2,3,…)

          ,

          對于任意正整數(shù)n,

          因此,如果要求汽車保有量不超過60萬輛,x≤3.6(萬輛).………………13分

          答:若每年新增汽車數(shù)量控制在3萬輛時,汽車保有量能達到要求;每年新增汽車不應超過3.6萬輛,則汽車保有量定能達到要求!14分

           

          19.解:(1)…………………………………………………………2分

          由己知有實數(shù)解,∴,故…………………5分

          (2)由題意是方程的一個根,設另一根為

          ,∴……………………………………………………7分

          ,

          時,;當時,;

          時,

          ∴當時,有極大值,又,,

          即當時,的量大值為  ………………………10分

          ∵對時,恒成立,∴

          ………………………………………………………………13分

          的取值范圍是  ………………………………………14分

          20.解:(1)作MPABBC于點P,NQABBE于點Q,連結(jié)PQ,依題意可得MPNQ,且MP=NQ,即MNQP是平行四邊形,

          MN=PQ.由已知,CM=BN=aCB=AB=BE=1,

          AC=BF=,  .

          CP=BQ=.

          MN=PQ=

          (0<a).…………………………………5分

          (2)由(Ⅰ),MN=,所以,當a=時,MN=.

          MN分別移動到AC、BF的中點時,MN的長最小,最小值為.………8分

          (3)取MN的中點G,連結(jié)AG、BG,∵AM=AN,BM=BNGMN的中點

          AGMN,BGMN,∠AGB即為二面角α的平面角,………………………11分

          AG=BG=,所以,由余弦定理有cosα=.

          故所求二面角的余弦值為-.………………………………………………………14分

          (注:本題也可用空間向量,解答過程略)

          21.解:⑴、對任意的正數(shù)均有

          ,…………………………………………………4分

          是定義在上的單增函數(shù),

          時,,,

          時,

          ,

          為等差數(shù)列,,. ……………………………6分

          ⑵、假設存在滿足條件,即

          對一切恒成立.

          ,

          ,………………………10分

          ,………………………12分

          ,單調(diào)遞增,,

          .……………………………………………………………14分

           

          (考生若有不同解法,請酌情給分!)

           

           

           


          同步練習冊答案