日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè).由題意建立方程組 查看更多

           

          題目列表(包括答案和解析)

           [番茄花園1] (本題滿分)在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足。

          (Ⅰ)求角C的大小;

          (Ⅱ)求的最大值。

           (Ⅰ)解:由題意可知

          absinC=,2abcosC.

          所以tanC=.

          因?yàn)?<C<,

          所以C=.

          (Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                                  =sinA+cosA+sinA=sin(A+)≤.

          當(dāng)△ABC為正三角形時(shí)取等號,

          所以sinA+sinB的最大值是.

           

           


           [番茄花園1]1.

          查看答案和解析>>

          已知a、b、c是互不相等的非零實(shí)數(shù).若用反證法證明三個(gè)方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個(gè)方程有兩個(gè)相異實(shí)根.

          【解析】本試題主要考查了二次方程根的問題的綜合運(yùn)用。運(yùn)用反證法思想進(jìn)行證明。

          先反設(shè),然后推理論證,最后退出矛盾。證明:假設(shè)三個(gè)方程中都沒有兩個(gè)相異實(shí)根,

          則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0

          相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

          (a-b)2+(b-c)2+(c-a)2≤0.顯然不成立。

          證明:假設(shè)三個(gè)方程中都沒有兩個(gè)相異實(shí)根,

          則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.

          相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

          (a-b)2+(b-c)2+(c-a)2≤0.                                      ①

          由題意a、b、c互不相等,∴①式不能成立.

          ∴假設(shè)不成立,即三個(gè)方程中至少有一個(gè)方程有兩個(gè)相異實(shí)根.

           

          查看答案和解析>>

          如圖,邊長為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.

          (Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;

          (Ⅱ)求二面角O—AE—D的余弦值.

          【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

          AO=DO=2.AODM

          因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

          AO平面DMQ,AODQ

          第二問中,作MNAE,垂足為N,連接DN

          因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

          ,因?yàn)锳ODM ,DM平面AOE

          因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

          (1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

          AO=DO=2.AODM

          因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

          AO平面DMQ,AODQ

          (2)作MNAE,垂足為N,連接DN

          因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

          ,因?yàn)锳ODM ,DM平面AOE

          因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

          二面角O-AE-D的平面角的余弦值為

           

          查看答案和解析>>

          設(shè)函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來源:學(xué)?。網(wǎng)]

          (Ⅰ)求a、b的值; 

          (Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]

          【解析】第一問解:因?yàn)?i>f(x)=lnxgx)=ax+

          則其導(dǎo)數(shù)為

          由題意得,

          第二問,由(I)可知,令。

          ,  …………8分

          是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

          ∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

          解:因?yàn)?i>f(x)=lnxgx)=ax+

          則其導(dǎo)數(shù)為

          由題意得,

          (11)由(I)可知,令。

          ,  …………8分

          是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

          ∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

           

          查看答案和解析>>

          已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.

          (I)求橢圓的方程;

          (II)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)的取值范圍.

          【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。

          第一問中,利用

          第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

          解:(1)由題意知

           

          查看答案和解析>>


          同步練習(xí)冊答案